The dispersing characteristics of antral contraction wave (ACW) flow in the antrum are investigated by reproducing the flow generated by an ACW and determining its effect on liquid drops. The goal is to gain information about the flow field and mechanical stresses, which are responsible for the food disintegration. Toward this end, a model antrum prototype was constructed, consisting of a cylinder that was closed at one end to represent the antrum and closed pylorus. A moving hollow piston with a parabolic inner contour was used to model an ACW. A computational model was developed that reflects this prototype. Experiments and simulations were first performed for fluids with different rheological properties, two relative occlusions (0.60 and 0.75), and several ACW speeds (1.0–7.5 mm/s). The simulations were validated with velocity measurements, and the characteristics of the retropulsive jet were quantified at different Reynolds numbers (0.5–105.3). Experiments were then performed in which liquid drops of different viscosity were placed in a highly viscous fluid with low interfacial tension, similar to conditions in a stomach. It was found that the viscosity ratio (0.001–0.1) influences the retraction dynamics of a drop's tail after stresses are relaxed. The flow and stress information from the simulations was used to analyze fluid transport in the antrum and to quantify drop breakup conditions. It was found that a drop broke up if both a critical capillary number of 0.51 was exceeded and the drop passed within a critical dimensionless distance of 0.3 to the wave apex.

1.
R.
Berry
,
T.
Miyagawa
,
N.
Paskaranandavadivel
,
P.
Du
,
T. R.
Angeli
,
M. L.
Trew
,
J. A.
Windsor
,
Y.
Imai
,
G.
O'Grady
, and
L. K.
Cheng
, “
Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
311
,
G895
(
2016
).
2.
G.
O'Grady
,
P.
Du
,
L. K.
Cheng
,
J. U.
Egbuji
,
W. J. E. P.
Lammers
,
J. A.
Windsor
, and
A. J.
Pullan
, “
Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
299
,
G585
(
2010
).
3.
M. B.
Zimmermann
,
C.
Chassard
,
F.
Rohner
,
E. K.
N'Goran
,
C.
Nindjin
,
A.
Dostal
,
J.
Utzinger
,
H.
Ghattas
,
C.
Lacroix
, and
R. F.
Hurrell
, “
The effects of iron fortification on the gut microbiota in African children: A randomized controlled trial in Côte d'Ivoire
,”
Am. J. Clin. Nutr.
92
,
1406
(
2010
).
4.
I.
Gunnarsdottir
and
L.
Dahl
, “
Iodine intake in human nutrition: A systematic literature review
,”
Food Nutr. Res.
56
,
19731
(
2012
).
5.
A.
Steingoetter
,
S.
Buetikofer
,
J.
Curcic
,
D.
Menne
,
J. F.
Rehfeld
,
M.
Fried
,
W.
Schwizer
, and
T. J.
Wooster
, “
The dynamics of gastric emptying and self-reported feelings of satiation are better predictors than gastrointestinal hormones of the effects of lipid emulsion structure on fat digestion in healthy adults - A Bayesian inference approach
,”
J. Nutri.
147
,
706
714
(
2017
).
6.
N.
Scheuble
, “
Controlling satiety by tailored interfaces
,” Ph.D. thesis (
ETH Zurich
,
2016
).
7.
R. G.
Lentle
and
P. W. M.
Janssen
, “
Manipulating digestion with foods designed to change the physical characteristics of digesta
,”
Crit. Rev. Food Sci. Nutr.
50
,
130
(
2010
).
8.
S.
Mueller
,
E. W.
Llewellin
, and
H. M.
Mader
, “
The rheology of suspensions of solid particles
,”
Proc. R. Soc. London, Ser. A
466
,
1201
(
2010
).
9.
E. J.
Windhab
, “
Fluid immobilization - A structure-related key mechanism for the viscous flow behavior of concentrated suspension systems
,”
Appl. Rheol.
10
,
134
(
2000
).
10.
H.
Dogan
and
J. L.
Kokini
, “
Rheological properties of foods
,” in
Handbook of Food Engineering
(
CRC Press
,
Boca Raton
,
2006
), pp.
1
124
.
11.
J. F.
Steffe
,
Rheological Methods in Food Process Engineering, 2nd
ed. (
Freeman Press
,
East Lansing, MI, USA
,
1996
).
12.
P.
Fischer
,
M.
Pollard
,
P.
Erni
,
I.
Marti
, and
S.
Padar
, “
Rheological approaches to food systems
,”
C. R. Phys.
10
,
740
(
2009
).
13.
G.
Tabilo-Munizaga
and
G. V.
Barbosa-Cánovas
, “
Rheology for the food industry
,”
J. Food Eng.
67
,
147
(
2005
).
14.
R. G.
Lentle
and
P. W. M.
Janssen
, “
The physical characteristics of digesta
,” in
The Physical Processes of Digestion
, edited by
R. G.
Lentle
and
P. W. M.
Janssen
(
Springer Science+Buisness Media
,
2011
), pp.
91
117
.
15.
J.
Van Den Abeele
,
J.
Rubbens
,
J.
Brouwers
, and
P.
Augustijns
, “
The dynamic gastric environment and its impact on drug and formulation behaviour
,”
Eur. J. Pharm. Sci.
96
,
207
(
2017
).
16.
P.
Boulby
,
R.
Moore
,
P.
Gowland
, and
R. C.
Spiller
, “
Fat delays emptying but increases forward and backward antral flow as assessed by flow-sensitive magnetic resonance imaging
,”
Neurogastroenterol. Motil.
11
,
27
(
1999
).
17.
K.
Indireshkumar
,
J. G.
Brasseur
,
H.
Faas
,
G. S.
Hebbard
,
P.
Kunz
,
J.
Dent
,
C.
Feinle
,
M.
Li
,
P.
Boesiger
,
M.
Fried
, and
W.
Schwizer
, “
Relative contributions of ‘pressure pump’ and ‘peristaltic pump’ to gastric emptying
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
278
,
G604
(
2000
).
18.
D.
Liao
,
H.
Gregersen
,
T.
Hausken
,
O. H.
Gilja
,
M.
Mundt
, and
G.
Kassab
, “
Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo
,”
Neurogastroenterol. Motil.
16
,
315
(
2004
).
19.
A. D.
Keet
, Jr.
, “
The prepyloric contractions in the normal stomach
,”
Acta Radiol.
48
,
413
(
1957
).
20.
M. A.
Kwiatek
,
A.
Steingoetter
,
A.
Pal
,
D.
Menne
,
J. G.
Brasseur
,
G. S.
Hebbard
,
P.
Boesiger
,
M.
Thumshirn
,
M.
Fried
, and
W.
Schwizer
, “
Quantification of distal antral contractile motility in healthy human stomach with magnetic resonance imaging
,”
J. Magn. Reson. Imaging
24
,
1101
(
2006
).
21.
S.
Alokaily
,
K.
Feigl
, and
F. X.
Tanner
, “
Characteristics of peristaltic flow during the mixing process in a model human stomach
,”
Phys. Fluids
31
,
103105
(
2019
).
22.
M. J.
Ferrua
and
R. P.
Singh
, “
Modeling the fluid dynamics in a human stomach to gain insight of food digestion
,”
J. Food Sci.
75
,
R151
(
2010
).
23.
Y.
Imai
,
I.
Kobayashi
,
S.
Ishida
,
T.
Ishikawa
,
M.
Buist
, and
T.
Yamaguchi
, “
Antral recirculation in the stomach during gastric mixing
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
304
,
G536
(
2013
).
24.
S.
Ishida
,
T.
Miyagawa
,
G.
O'Grady
,
L. K.
Cheng
, and
Y.
Imai
, “
Quantification of gastric emptying caused by impaired coordination of pyloric closure with antral contraction: A simulation study
,”
J. R. Soc., Interface
16
,
20190266
(
2019
).
25.
H.
Kozu
,
I.
Kobayashi
,
M.
Nakajima
,
K.
Uemura
,
S.
Sato
, and
S.
Ichikawa
, “
Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD
,”
Food Biophys.
5
,
330
(
2010
).
26.
C.
Li
,
J.
Xiao
,
X. D.
Chen
, and
Y.
Jin
, “
Mixing and emptying of gastric contents in human-stomach: A numerical study
,”
J. Biomech.
118
,
110293
(
2021
).
27.
C.
Li
and
Y.
Jin
, “
A CFD model for investigating the dynamics of liquid gastric contents in human-stomach induced by gastric motility
,”
J. Food Eng.
296
,
110461
(
2021
).
28.
F.
Kong
and
R. P.
Singh
, “
A human gastric simulator (HGS) to study food digestion in human stomach
,”
J. Food Sci.
75
,
E627
(
2010
).
29.
M. J. Y.
Yoo
and
X. D.
Chen
, “
GIT physicochemical modeling - A critical review
,”
Int. J. Food Eng.
2
,
4
(
2006
).
30.
M.
Minekus
, “
The TNO gastro-intestinal model (TIM)
,” in
The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models
(
Springer International Publishing
,
Cham
,
2015
), pp.
37
46
.
31.
J. S.
Karthikeyan
,
D.
Salvi
,
M. G.
Corradini
,
R. D.
Ludescher
, and
M. V.
Karwe
, “
Effect of bolus viscosity on carbohydrate digestion and glucose absorption processes: An in vitro study
,”
Phys. Fluids
31
,
111905
(
2019
).
32.
M. J. S.
Wickham
,
R. M.
Faulks
,
J.
Mann
, and
G.
Mandalari
, “
The design, operation, and application of a dynamic gastric model
,”
Dissolution Technol.
19
,
15
(
2012
).
33.
Y.
Li
,
L.
Fortner
, and
F.
Kong
, “
Development of a Gastric Simulation Model (GSM) incorporating gastric geometry and peristalsis for food digestion study
,”
Food Res. Int.
125
,
108598
(
2019
).
34.
R.
Hashem
,
W.
Xu
,
M.
Stommel
, and
L.
Cheng
, “
Conceptualisation and specification of a biologically-inspired, soft-bodied gastric robot
,” in Proceedings of
23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
(
IEEE
,
2016
), pp.
1
6
.
35.
Y.
Dang
,
L. K.
Cheng
,
M.
Stommel
, and
W.
Xu
, “
Technical requirements and conceptualization of a soft pneumatic actuator inspired by human gastric motility
,” in
Proceedings of 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
(
IEEE
,
2016
), pp.
1
6
.
36.
Y.
Dang
,
Y.
Liu
,
R.
Hashem
,
D.
Bhattacharya
,
J.
Allen
,
M.
Stommel
,
L. K.
Cheng
, and
W.
Xu
, “
SoGut: A soft robotic gastric simulator
,”
Soft Rob.
8
,
273
283
(
2021
).
37.
B. J.
Bentley
and
L. G.
Leal
, “
An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows
,”
J. Fluid Mech.
167
,
241
(
1986
).
38.
V.
Cristini
,
S.
Guido
,
A.
Alfani
,
J.
Bławzdziewicz
, and
M.
Loewenberg
, “
Drop breakup and fragment size distribution in shear flow
,”
J. Rheol.
47
,
1283
(
2003
).
39.
V.
Cristini
,
J.
Bławzdziewicz
, and
M.
Loewenberg
, “
Drop breakup in three-dimensional viscous flows
,”
Phys. Fluids
10
,
1781
(
1998
).
40.
T.
Driessen
,
R.
Jeurissen
,
H.
Wijshoff
,
F.
Toschi
, and
D.
Lohse
, “
Stability of viscous long liquid filaments
,”
Phys. Fluids
25
,
062109
(
2013
).
41.
H. A.
Stone
, “
Dynamics of drop deformation and breakup in viscous fluids
,”
Annu. Rev. Fluid Mech.
26
,
65
(
1994
).
42.
D.
Wang
,
D. S.
Tan
,
B. C.
Khoo
,
Z.
Ouyang
, and
N.
Phan-Thien
, “
A lattice Boltzmann modeling of viscoelastic drops' deformation and breakup in simple shear flows
,”
Phys. Fluids
32
,
123101
(
2020
).
43.
S.
Bhardwaj
,
A.
Dalal
,
G.
Biswas
, and
P. P.
Mukherjee
, “
Analysis of droplet dynamics in a partially obstructed confinement in a three-dimensional channel
,”
Phys. Fluids
30
,
102102
(
2018
).
44.
H.
Dong
,
W. W.
Carr
, and
J. F.
Morris
, “
An experimental study of drop-on-demand drop formation
,”
Phys. Fluids
18
,
072102
(
2006
).
45.
K.
Feigl
,
A.
Baniabedalruhman
,
F. X.
Tanner
, and
E. J.
Windhab
, “
Numerical simulations of the breakup of emulsion droplets inside a spraying nozzle
,”
Phys. Fluids
28
,
123103
(
2016
).
46.
K.
Feigl
,
S. F. M.
Kaufmann
,
P.
Fischer
, and
E. J.
Windhab
, “
A numerical procedure for calculating droplet deformation in dispersing flows and experimental verification
,”
Chem. Eng. Sci.
58
,
2351
(
2003
).
47.
H. A.
Stone
,
B. J.
Bentley
, and
L. G.
Leal
, “
An experimental study of transient effects in the breakup of viscous drops
,”
J. Fluid Mech.
173
,
131
(
1986
).
48.
M.
Tjahjadi
and
J. M.
Ottino
, “
Stretching and breakup of droplets in chaotic flows
,”
J. Fluid Mech.
232
,
191
(
1991
).
49.
Y.
Tian
,
Y.
Tian
,
G.
Shi
,
B.
Zhou
,
C.
Zhang
, and
L.
He
, “
Experimental study on oil droplet breakup under the action of turbulent field in modified concentric cylinder rotating device
,”
Phys. Fluids
32
,
087105
(
2020
).
50.
Q.
Nie
,
Y.
Zhong
, and
H.
Fang
, “
Study of a nanodroplet breakup through many-body dissipative particle dynamics
,”
Phys. Fluids
31
,
042007
(
2019
).
51.
A.
Salama
, “
On the breakup of a permeating oil droplet in crossflow filtration: Effects of viscosity contrast
,”
Phys. Fluids
32
,
072101
(
2020
).
52.
A. R.
Cooke
, “
Control of gastric emptying and motility
,”
Gastroenterology
68
,
804
(
1975
).
53.
R. G.
Lentle
and
P. W. M.
Janssen
, “
Contractile activity and control of the physical process of digestion within a gut segment
,” in
The Physical Processes of Digestion
, edited by
R. G.
Lentle
and
P. W. M.
Janssen
(
Springer Science+Buisness Media
,
2011
), pp.
121
153
.
54.
K.
Schulze
, “
Imaging and modelling of digestion in the stomach and the duodenum
,”
Neurogastroenterol. Motil.
18
,
172
(
2006
).
55.
H. J.
Ehrlein
and
M.
Schemann
,
Gastrointestinal Motility
(
Technische Universitat Minchen
,
2005
).
56.
R. G.
Lentle
and
P. W. M.
Janssen
, “
Local motility and flow in segments that exhibit volume retention
,” in
The Physical Processes of Digestion
, edited by
R. G.
Lentle
and
P. W. M.
Janssen
(
Springer Science+Buisness Media
,
2011
), pp.
189
219
.
57.
Y.
Takeda
, “
Velocity profile measurement by ultrasound Doppler shift method
,”
Int. J. Heat Fluid Flow
7
,
313
(
1986
).
58.
M.
Milas
,
M.
Rinaudo
,
M.
Knipper
, and
J. L.
Schuppiser
, “
Flow and viscoelastic properties of xanthan gum solutions
,”
Macromolecules
23
,
2506
(
1990
).
59.
Ubertone
,
UB-Lab Acoustic Profiler User's Manual
(
Strasbourg
,
France
,
2017
).
60.
S. A.
Jones
, “
Fundamental sources of error and spectral broadening in Doppler ultrasound signals
,”
Crit. Rev. Biomed. Eng.
21
,
399
(
1993
).
61.
D.
Sirmans
and
B.
Bumgarner
, “
Numerical comparison of five mean frequency estimators
,”
J. Appl. Meteorol.
14
,
991
(
1975
).
62.
OpenFOAM
,
OpenFOAM
(
The OpenFOAM Foundation
,
2019
).
63.
W. S.
Rasband
,
ImageJ
(
U.S. National Institutes of Health
,
2018
).
64.
K.
Feigl
,
F. X.
Tanner
,
B. J.
Edwards
, and
J. R.
Collier
, “
A numerical study of the measurement of elongational viscosity of polymeric fluids in a semihyperbolically converging die
,”
J. Non-Newtonian Fluid Mech.
115
,
191
(
2003
).
65.
K.
Feigl
and
H. C.
Öttinger
, “
The flow of a LDPE melt through an axisymmetric contraction: A numerical study and comparison to experimental results
,”
J. Rheol.
38
,
847
(
1994
).
66.
R. D.
Egholm
,
P.
Fischer
,
K.
Feigl
,
E. J.
Windhab
,
R.
Kipka
, and
P.
Szabo
, “
Experimental and numerical analysis of droplet deformation in a complex flow generated by a rotor–stator device
,”
Chem. Eng. Sci.
63
,
3526
(
2008
).
67.
M.
Kagiyama
,
Y.
Ogasawara
,
S.
Tadaoka
, and
F.
Kajiya
, “
Measurement accuracy of the flow velocity in pulsed ultrasound Doppler velocimeter
,”
Ultrasound Med. Biol.
25
,
1265
(
1999
).
68.
M. J.
Ferrua
and
R. P.
Singh
, “
Understanding the fluid dynamics of gastric digestion using computational modeling
,”
Procedia Food Sci.
1
,
1465
(
2011
).
69.
S.
Alokaily
,
K.
Feigl
,
F. X.
Tanner
, and
E. J.
Windhab
, “
Numerical simulations of the transport of Newtonian and non-Newtonian fluids via peristaltic motion
,”
Appl. Rheol.
28
,
32832
(
2018
).
70.
A.
Pal
,
J. G.
Brasseur
, and
B.
Abrahamsson
, “
A stomach road or ‘Magenstrasse’ for gastric emptying
,”
J. Biomech.
40
,
1202
(
2007
).
71.
A.
Pal
,
K.
Indireshkumar
,
W.
Schwizer
,
B.
Abrahamsson
,
M.
Fried
, and
J. G.
Brasseur
, “
Gastric flow and mixing studied using computer simulation
,”
Proc. R. Soc. London, Ser. B
271
,
2587
(
2004
).
72.
N.
Scheuble
,
J.
Schaffner
,
M.
Schumacher
,
E. J.
Windhab
,
D.
Liu
,
H.
Parker
,
A.
Steingoetter
, and
P.
Fischer
, “
Tailoring emulsions for controlled lipid release: Establishing in vitro-in Vivo correlation for digestion of lipids
,”
ACS Appl. Mater. Interfaces
10
,
17571
(
2018
).
73.
Y.
Dang
,
H.
Devaraj
,
M.
Stommel
,
L. K.
Cheng
,
A. J.
McDaid
, and
W.
Xu
, “
Experimental investigation into the dynamics of a radially contracting actuator with embedded sensing capability
,”
Soft Rob.
7
,
478
(
2020
).
74.
R.
Hashem
,
W.
Xu
,
M.
Stommel
, and
L. K.
Cheng
, “
FEA evaluation of ring-shaped soft-actuators for a stomach robot
,” in
Robot Intelligence Technology and Applications 5
, edited by
J.-H.
Kim
,
H.
Myung
,
J.
Kim
,
W.
Xu
,
E. T.
Matson
,
J.-W.
Jung
, and
H.-L.
Choi
(
Springer International Publishing
,
Cham
,
2019
), pp.
475
487
.
You do not currently have access to this content.