This article presents a revised formulation of the color gradient method to model immiscible two-phase flows in the lattice Boltzmann framework. Thanks to this formulation, the color-gradient method is generalized to an arbitrary Equation of State under the formp=f(ρ,ϕ), relieving the nonphysical limitation between density and sound speed ratios present in the original formulation. A fourth-order operator for the equilibrium function is introduced, and its formulation is justified through the calculation of the 3rd order equivalent equation of this numerical scheme. A mathematical development demonstrating how the recoloration phase allows us to solve a conservative Allen–Cahn equation is also proposed. Finally, a novel temporal correction is proposed, improving the numerical stability of the method at high density ratio. Validation tests up to density ratios of 1000 are presented.

1.
A. H.
Lefebvre
and
V. G.
Mcdonell
,
Atomization and Sprays
(
CRC Press/Taylor and Francis
,
2017
), p.
300
.
2.
N.
Ashgriz
,
Handbook of Atomization and Sprays
, 1st ed. (
Springer
,
2011
).
3.
C.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
4.
S.
Osher
and
J.
Sethian
, “
Front propagating with curvature dependent speed: Algorithm based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
,
12
49
(
1988
).
5.
J. D.
van der Waals
, “
The thermodynamic theory of capillarity under the hypothesis of a continuous density variation
,”
J. Stat. Phys.
20
,
200
244
(
1979
).
6.
D.
Korteweg
, “
Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capilarité dans l'hypothèse d'une variation continue de la densité
,”
Arch. Neerl. Sci. Exactes Nat.
II
,
1
24
(
1901
); available at https://archive.org/details/archivesnerland261901laha/page/10/mode/2up.
7.
J.
Cahn
and
J.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
267
(
1957
).
8.
M.
Baer
and
J.
Nunziato
, “
A two phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
,”
Int. J. Multiphase Flow
12
,
861
889
(
1986
).
9.
R.
Saurel
and
R.
Abgrall
, “
A simple method for compressible multifluid flows
,”
SIAM J. Sci. Comput.
21
,
1115
1145
(
1999
).
10.
A. K.
Kapila
,
R.
Menikoff
,
J. B.
Bdzil
,
S. F.
Son
, and
D. S.
Stewart
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
,
3002
3024
(
2001
).
11.
R.
Saurel
,
F.
Petitpas
, and
R. A.
Berry
, “
Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures
,”
J. Comput. Phys.
228
,
1678
1712
(
2009
).
12.
F.
Fraysse
and
R.
Saurel
, “
Automatic differentiation using operator overloading (ADOO) for implicit resolution of hyperbolic single phase and two-phase flow models
,”
J. Comput. Phys.
399
,
108942
(
2019
).
13.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
, “
Diffuse-interface methods in fluid mechanics
,”
Annu. Rev. Fluid Mech.
30
,
139
165
(
1998
).
14.
R.
Saurel
and
C.
Pantano
, “
Diffuse-interface capturing methods for compressible two-phase flows
,”
Annu. Rev. Fluid Mech.
50
,
105
130
(
2018
).
15.
U.
Frisch
,
B.
Hasslacher
, and
Y.
Pomeau
, “
Lattice-gas automata for the Navier–Stokes equation
,”
Phys. Rev. Lett.
56
,
1505
1508
(
1986
).
16.
D.
D'humières
and
P.
Lallemand
, “
Lattice gas automata for fluid mechanics
,”
Physica A
140
,
326
335
(
1986
).
17.
G.
McNamara
and
G.
Zanetti
, “
Use of the Boltzmann equation to simulate lattice-gas automata
,”
Phys. Rev. Lett.
61
,
2332
2335
(
1988
).
18.
D.
Rothman
and
J.
Keller
, “
Immiscible cellular-automaton fluids
,”
J. Stat. Phys.
52
,
1119
1127
(
1988
).
19.
A.
Gustensen
,
D.
Rothman
,
S.
Zaleski
, and
G.
Zanetti
, “
Lattice Boltzmann model of immiscible fluids
,”
Phys. Rev. A
43
,
4320
4327
(
1991
).
20.
W.
Shao
and
J.
Li
, “
Review of lattice Boltzmann method applied to computational aeroacoustics
,”
Arch. Acoust.
44
,
215
238
(
2019
).
21.
Y.
long Zhao
and
Z.
ming Wang
, “
Multi-scale analysis on coal permeability using the lattice Boltzmann method
,”
J. Petroleum Sci. Eng.
174
,
1269
1278
(
2019
).
22.
T.
Zhang
and
S.
Sun
, “
A coupled Lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption
,”
Fuel
246
,
196
203
(
2019
).
23.
J.
Wang
,
L.
Chen
,
Q.
Kang
, and
S. S.
Rahman
, “
Apparent permeability prediction of organic shale with generalized lattice Boltzmann model considering surface diffusion effect
,”
Fuel
181
,
478
490
(
2016
).
24.
M.
Tayyab
,
S.
Zhao
, and
P.
Boivin
, “
Lattice-Boltzmann modeling of a turbulent bluff-body stabilized flame
,”
Phys. Fluids
33
,
031701
(
2021
).
25.
M.
Sakthivel
and
K.
Anupindi
, “
An off-lattice Boltzmann method for blood flow simulation through a model irregular arterial stenosis: The effects of amplitude and frequency of the irregularity
,”
Phys. Fluids
33
,
031912
(
2021
).
26.
S.
Saito
,
A.
De Rosis
,
L.
Fei
,
K. H.
Luo
,
K. I.
Ebihara
,
A.
Kaneko
, and
Y.
Abe
, “
Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder
,”
Phys. Fluids
33
,
023307
(
2021
).
27.
T. R.
Mitchell
,
M.
Majidi
,
M. H.
Rahimian
, and
C. R.
Leonardi
, “
Computational modeling of three-dimensional thermocapillary flow of recalcitrant bubbles using a coupled lattice Boltzmann-finite difference method
,”
Phys. Fluids
33
,
032108
(
2021
).
28.
Y.
Li
,
J.
Mu
,
C.
Xiong
,
Z.
Sun
, and
C.
Jin
, “
Effect of visco-plastic and shear-thickening/thinning characteristics on non-Newtonian flow through a pipe bend
,”
Phys. Fluids
33
,
033102
(
2021
).
29.
A.
De Rosis
,
J.
Al-Adham
,
H.
Al-Ali
, and
R.
Meng
, “
Double-D2Q9 lattice Boltzmann models with extended equilibrium for two-dimensional magnetohydrodynamic flows
,”
Phys. Fluids
33
,
035143
(
2021
).
30.
K. J.
Petersen
and
J. R.
Brinkerhoff
, “
On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: A review
,”
Phys. Fluids
33
,
041302
(
2021
).
31.
X.
Shan
and
H.
Chen
, “
Lattice boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
1820
(
1993
).
32.
X.
Shan
and
H.
Chen
, “
Simulation of non-ideal gases and liquid-gas phase transition by lattice boltzmann equation
,”
Phys. Rev. E
49
,
2941
2948
(
1994
).
33.
M.
Swift
,
W.
Osborn
, and
J.
Yeomans
, “
Lattice Boltzmann simulation of nonideal fluids
,”
Phys. Rev. Lett.
75
,
830
833
(
1995
).
34.
M.
Swift
,
E.
Orlandini
,
W.
Osborn
, and
J.
Yeomans
, “
Lattice Boltzmann simulations of liquid-gas and binary fluid systems
,”
Phys. Rev. E
54
,
5041
5052
(
1996
).
35.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
,
642
663
(
1999
).
36.
A.
Fakhari
and
T.
Lee
, “
Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynold numbers
,”
Phys. Rev. E
87
,
023304
(
2013
).
37.
A.
Fakhari
,
M.
Geier
, and
T.
Lee
, “
A mass-conserving lattice boltzmann method with dynamic grid refinement for immiscible two-phase flows
,”
J. Comput. Phys.
315
,
434
457
(
2016
).
38.
A.
Fakhari
and
D.
Bolster
, “
Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios
,”
J. Comput. Phys.
334
,
620
638
(
2017
).
39.
A.
Fakhari
,
T.
Mitchell
,
C.
Leonardi
, and
D.
Bolster
, “
Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios
,”
Phys. Rev. E
96
,
053301
(
2017
).
40.
M.
Geier
,
A.
Fakhari
, and
T.
Lee
, “
A conservative phase-field lattice Boltzmann model for interface tracking equation
,”
Phys. Rev. E
91
,
063309
(
2015
).
41.
T.
Mitchell
,
C.
Leonardi
, and
A.
Fakhari
, “
Development of a three-dimensional phase-field lattice Boltzmann method for the study of immicible fluids at high density ratio
,”
Int. J. Multiphase Flow
107
,
1
15
(
2018
).
42.
Y.
Sun
and
C.
Beckermann
, “
Sharp interface tracking using the phase-field equation
,”
J. Comput. Phys.
220
,
626
653
(
2007
).
43.
P.
Chiu
and
Y.-T.
Lin
, “
A conservative phase field method for solving compressible two phase flows
,”
J. Comput. Phys.
230
,
185
204
(
2011
).
44.
M.
Wöhrwag
,
C.
Semprebon
,
A.
Mazloomi Moqaddam
,
I.
Karlin
, and
H.
Kusumaatmaja
, “
Ternary free-energy entropic lattice Boltzmann model with a high density ratio
,”
Phys. Rev. Lett.
120
,
234501
(
2018
).
45.
S.
Saito
,
A.
De Rosis
,
A.
Festuccia
,
A.
Kaneko
,
Y.
Abe
, and
K.
Koyama
, “
Color-gradient lattice Boltzmann model with monorthogonal central moments: Hydrodynamic melt-jet breakup simulations
,”
Phys. Rev. E
98
,
013305
(
2018
).
46.
Y.
Yu
,
H.
Liu
,
D.
Liang
, and
Y.
Zhang
, “
A versatile lattice Boltzmann model for immiscible ternary fluid flows
,”
Phys. Fluids
31
,
012108
(
2019
).
47.
T.
Inamuro
,
T.
Echizen
, and
F.
Horai
, “
Validation of an improved lattice Boltzmann method for incompressible two-phase flows
,”
Comput. Fluids
175
,
83
90
(
2018
).
48.
S.
Mukherjee
,
P.
Berghout
, and
H. E.
Van den Akker
, “
A lattice Boltzmann approach to surfactant-laden emulsions
,”
AIChE J.
65
,
811
828
(
2019
).
49.
M.
Monteferrante
,
A.
Montessori
,
S.
Succi
,
D.
Pisignano
, and
M.
Lauricella
, “
Lattice Boltzmann multicomponent model for direct-writing printing
,”
Phys. Fluids
33
,
042103
(
2021
).
50.
H.
Liu
,
Q.
Kang
,
C.
Leonardi
,
S.
Schmieshek
,
A.
Narvaez
,
B.
Jones
,
J.
Williams
,
A.
Valocchi
, and
J.
Harting
, “
Multiphase lattice Boltzmann simulations for porous media applications
,”
Comput. Geosci.
20
,
777
805
(
2016
).
51.
R.
Saurel
,
P.
Boivin
, and
O. L.
Métayer
, “
A general formulation for cavitating, boiling and evaporating flows
,”
Comput. Fluids
128
,
53
64
(
2016
).
52.
D. W.
Davis
and
B.
Chehroudi
, “
Shear-coaxial jets from a rocket-like injector in a transverse acoustic field at high pressures
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2006
), Vol.
13
, pp.
9173
9190
.
53.
F.
Baillot
,
J. B.
Blaisot
,
G.
Boisdron
, and
C.
Dumouchel
, “
Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field
,”
J. Fluid Mech.
640
,
305
342
(
2009
).
54.
A.
Qi
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Interfacial destabilization and atomization driven by surface acoustic waves
,”
Phys. Fluids
20
,
074103
(
2008
).
55.
J. M.
Apeloig
,
F. X.
D'Herbigny
,
F.
Simon
,
P.
Gajan
,
M.
Orain
, and
S.
Roux
, “
Liquid-fuel behavior in an aeronautical injector submitted to thermoacoustic instabilities
,”
J. Propul. Power
31
,
309
319
(
2015
).
56.
E.
Lo Schiavo
,
D.
Laera
,
E.
Riber
,
L.
Gicquel
, and
T.
Poinsot
, “
Effects of liquid fuel/wall interaction on thermoacoustic instabilities in swirling spray flames
,”
Combust. Flame
219
,
86
101
(
2020
).
57.
T.
Christou
,
B.
Stelzner
, and
N.
Zarzalis
, “
Influence of an oscillating airflow on the prefilming airblast atomization process
,”
Atomization Sprays
31
,
1
14
(
2021
).
58.
T.
Reis
and
T.
Phillips
, “
Lattice Boltzmann model for simulating immiscible two-phase flows
,”
J. Phys. A: Math. Theor.
40
,
4033
(
2007
).
59.
H.
Liu
,
A. J.
Valocchi
, and
Q.
Kang
, “
Three dimensionnal lattice Boltzmann model for immiscible two phase flow simulations
,”
Phys. Rev. E
85
,
046309
(
2012
).
60.
A.
Subhedar
,
A.
Reiter
,
M.
Selzer
,
F.
Varnik
, and
B.
Nestler
, “
Interface tracking characteristics of color-gradient lattice Boltzmann model for immiscible fluids
,”
Phys. Rev. E
101
,
013313
(
2020
).
61.
S.
Leclaire
,
A.
Parmigiani
,
B.
Chopard
, and
J.
Latt
, “
Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models
,”
Int. J. Mod. Phys. C
28
,
1750085
(
2017
).
62.
D.
Gueyffier
,
J.
Li
,
R.
Scardovelli
, and
S.
Zaleski
, “
Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows
,”
J. Comput. Phys.
152
,
423
456
(
1999
).
63.
G.
Périgaud
and
R.
Saurel
, “
A compressible flow model with capillary effect
,”
J. Comput. Phys.
209
,
139
178
(
2005
).
64.
Y.
Ba
,
H.
Liu
,
Q.
Li
,
Q.
Kang
, and
J.
Sun
, “
Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio
,”
Phys. Rev. E
94
,
023310
(
2016
).
65.
J.
Brackbill
,
D.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
66.
T.
Krüger
,
A.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E.
Viggen
,
The Lattice Boltzmann Method, Principles and Practice
, 1st ed. (
Springer
,
2017
).
67.
S.
Leclaire
,
M.
Reggio
, and
J.
Trépanier
, “
Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model
,”
Comput. Fluids
48
,
98
112
(
2011
).
68.
D.
Grunau
,
S.
Chen
, and
K.
Eggert
, “
A lattice Boltzman model for multiphase fluid flows
,”
Phys. Fluids A
5
,
2557
2562
(
1993
).
69.
O. L.
Métayer
,
J.
Massoni
, and
R.
Saurel
, “
Elaborating equations of state of a liquid and its vapor for two-phase flow models
,”
Int. J. Therm. Sci.
43
,
265
276
(
2004
).
70.
P.
Boivin
,
M.
Cannac
, and
O. L.
Métayer
, “
A thermodynamic closure for the simulation of multiphase reactive flows
,”
Int. J. Therm. Sci.
137
,
640
649
(
2019
).
71.
A.
Chiapolino
,
P.
Boivin
, and
R.
Saurel
, “
A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows
,”
Comput. Fluids
150
,
31
45
(
2017
).
72.
M.
Latva-Kokko
and
D.
Rothman
, “
Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids
,”
Phys. Rev. E
71
,
056702
(
2005
).
73.
S.
Leclaire
,
N.
Pellerin
,
M.
Reggio
, and
J.-Y.
Trépanier
, “
Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models
,”
Int. J. Multiphase Flow
57
,
159
168
(
2013
).
74.
S.
Leclaire
,
N.
Pellerin
,
M.
Reggio
, and
J.-Y.
Trépanier
, “
Unsteady immiscible multiphase flow validation of a multiplerelaxation-time lattice Boltzmann method
,”
J. Phys. A: Math. Theor.
47
,
105501
(
2014
).
75.
S.
Leclaire
,
A.
Parmigiani
,
O.
Malaspinas
,
B.
Chopard
, and
J.
Latt
, “
Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media
,”
Phys. Rev. E
95
,
033306
(
2017
).
76.
P.
Bhatnagar
,
E.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
77.
G.
Farag
,
S.
Zhao
,
G.
Chiavassa
, and
P.
Boivin
, “
Consistency study of lattice-Boltzmann schemes macroscopic limit
,”
Phys. Fluids
33
,
037101
(
2021
).
78.
Z.
Wen
,
Q.
Li
,
Y.
Yu
, and
K.
Luo
, “
Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows
,”
Phys. Rev. E
100
,
023301
(
2019
).
79.
Q.
Li
,
K.
Luo
,
Y.
He
,
Y.
Gao
, and
W.
Tao
, “
Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices
,”
Phys. Rev. E
85
,
016710
(
2012
).
80.
C.
Pooley
and
K.
Furtado
, “
Eliminating spurious velocities in the free-energy lattice Boltzmann method
,”
Phys. Rev. E
77
,
046702
(
2008
).
81.
C.
Semprebon
,
T.
Krüger
, and
H.
Kusumaatmaja
, “
Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles
,”
Phys. Rev. E
93
,
033305
(
2016
).
82.
O.
Malaspinas
, “
Increasing stability and accuracy of the lattice Boltzmann scheme: Recursivity and regularisation
,” arXiv:1505.06900 (
2015
).
83.
F.
Renard
,
Y.
Feng
,
J.
Boussuge
, and
P.
Sagaut
, “
Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows
,” arXiv:2002.03644 (
2020
).
84.
U.
D'Ortona
,
D.
Salin
,
M.
Cieplak
,
R.
Rybka
, and
J.
Banavar
, “
Two-color nonlinear Boltzmann cellular automate: Surface tension and wetting
,”
Phys. Rev. E
51
,
3718
3728
(
1995
).
85.
I.
Halliday
,
A.
Hollis
, and
C.
Care
, “
Lattice Boltzmann algorithm for continuum multicomponent flow
,”
Phys. Rev. E
76
,
026708
(
2007
).
86.
S.
Guo
,
Y.
Feng
, and
P.
Sagaut
, “
Improved standard thermal lattice Boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows
,”
Phys. Fluids
32
,
126108
(
2020
).
87.
F.
Dubois
, “
Equivalent partial differential equations of a lattice Boltzmann scheme
,”
Comput. Math. Appl.
55
,
1441
1449
(
2008
).
88.
K.
Burgin
,
J.
Spendlove
,
X.
Xu
, and
I.
Halliday
, “
Kinematics of chromodynamic multicomponent lattice Boltzmann simulation with a large density contrast
,”
Phys. Rev. E
100
,
043310
(
2019
).
89.
A. S.
Suiker
and
C. S.
Chang
, “
Application of higher-order tensor theory for formulating enhanced continuum models
,”
Acta Mech.
142
,
223
234
(
2000
).
90.
S.
Wolfram
, “
Cellular automaton fluids 1: Basic theory
,”
J. Stat. Phys.
45
,
471
526
(
1986
).
91.
D.
Holdych
,
D.
Rovas
,
J.
Georgiadis
, and
R.
Buckius
, “
An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models
,”
Int. J. Mod. Phys. C
09
,
1393
1404
(
1998
).
92.
N. C.
Sidik
and
T.
Tanahashi
, “
Two-phase flow simulation with lattice Boltzmann method
,”
J. Mek.
24
,
68
79
(
2007
).
93.
H.
Huang
and
X.
Lu
, “
Relative permeabilities and coupling effects in steady-state gas-liquid flow in porous media: A lattice Boltzmann study
,”
Phys. Fluids
21
,
092104
(
2009
).
94.
L.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1-10
,
4
13
(
1878
).
95.
X.
He
,
X.
Shan
, and
G. D.
Doolen
, “
Discrete Boltzmann equation model for nonideal gases
,”
Phys. Rev. E
57
,
R13
R16
(
1998
).
96.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
You do not currently have access to this content.