Rheotaxis is a well-known phenomenon among microbial organisms and artificial active colloids, wherein the swimmers respond to an imposed flow. We report the first experimental evidence of upstream rheotaxis by spherical active droplets. It is shown that the presence of a nearby wall and the resulting strong flow-gradient at the droplet level is at the root of this phenomenon. Experiments with optical cells of different heights reveal that rheotaxis is observed only for a finite range of shear rates, independent of the bulk flow rate. We conjecture that the flow induced distortion of an otherwise isotropic distribution of filled/empty micelles around the droplet propels it against the flow. We also show that nematic droplets exhibit elastic stress-induced oscillations during their rheotactic flight. A promising potential of manipulating the rheotactic behavior to trap as well as shuttle droplets between target locations is demonstrated, paving way to potentially significant advancement in bio-medical applications.

1.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.
28
,
253001
(
2016
).
2.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
3.
T.
Tran-Cong
and
M.
Ramia
, “
A boundary-element analysis of flagellar propulsion
,”
J. Fluid Mech.
184
,
533
(
1987
).
4.
M.
Ramia
,
D. L.
Tullock
, and
N.
Phan-Thien
, “
The role of hydrodynamic interaction in the locomotion of microorganisms
,”
Biophys. J.
65
,
755
(
1993
).
5.
J.
Hill
,
O.
Kalkanci
,
J. L.
McMurry
, and
H.
Koser
, “
Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream
,”
Phys. Rev. Lett.
98
,
068101
(
2007
).
6.
I. P.
Dobrovolsky
, “
Hydrodynamic phenomena
,”
Annu. Rev. Fluid Mech.
41
,
313
(
1992
).
7.
H. C. F.
Marcos
,
T. R.
Powers
, and
R.
Stocker
, “
Bacterial rheotaxis
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
4780
(
2012
).
8.
A.
Dauptain
,
J.
Favier
, and
A.
Bottaro
, “
Hydrodynamics of ciliary propulsion
,”
J. Fluids Struct.
24
,
1156
(
2008
).
9.
E. A.
Gillies
,
R. M.
Cannon
,
R. B.
Green
, and
A. A.
Pacey
, “
Hydrodynamic propulsion of human sperm
,”
J. Fluid Mech.
625
,
445
(
2009
).
10.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
11.
J. L.
Anderson
and
D. C.
Prieve
, “
Diffusiophoresis: Migration of colloidal particles in gradients of solute concentration
,”
Sep. Purif. Methods
13
,
67
(
1984
).
12.
T.
Banno
,
A.
Asami
,
N.
Ueno
,
H.
Kitahata
,
Y.
Koyano
,
K.
Asakura
, and
T.
Toyota
, “
Deformable self-propelled micro-object comprising underwater oil droplets
,”
Sci. Rep.
6
,
31292
(
2016
).
13.
T.
Ban
and
H.
Nakata
, “
Metal-ion-dependent motion of self-propelled droplets due to the Marangoni effect
,”
J. Phys. Chem. B
119
,
7100
(
2015
).
14.
T.
Banno
,
R.
Kuroha
, and
T.
Toyota
, “
pH-sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages
,”
Langmuir
28
,
1190
(
2012
).
15.
T.
Banno
,
S.
Miura
,
R.
Kuroha
, and
T.
Toyota
, “
Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants
,”
Langmuir
29
,
7689
(
2013
).
16.
S.
Herminghaus
,
C. C.
Maass
,
C.
Krüger
,
S.
Thutupalli
,
L.
Goehring
, and
C.
Bahr
, “
Interfacial mechanisms in active emulsions
,”
Soft Matter
10
,
7008
(
2014
).
17.
A.
Izzet
,
P. G.
Moerman
,
P.
Gross
,
J.
Groenewold
,
A. D.
Hollingsworth
,
J.
Bibette
, and
J.
Brujic
, “
Tunable persistent random walk in swimming droplets
,”
Phys. Rev. X
10
,
021035
(
2020
).
18.
I.
Lagzi
,
S.
Soh
,
P. J.
Wesson
,
K. P.
Browne
, and
B. A.
Grzybowski
, “
Maze solving by chemotactic droplets
,”
J. Am. Chem. Soc.
132
,
1198
(
2010
).
19.
C. C.
Maass
,
C.
Krüger
,
S.
Herminghaus
, and
C.
Bahr
, “
Swimming droplets
,”
Annu. Rev. Condens. Matter Phys.
7
,
171
(
2016
).
20.
P. G.
Moerman
,
H. W.
Moyses
,
E. B.
Van Der Wee
,
D. G.
Grier
,
A.
Van Blaaderen
,
W. K.
Kegel
,
J.
Groenewold
, and
J.
Brujic
, “
Solute-mediated interactions between active droplets
,”
Phys. Rev. E
96
,
032607
(
2017
).
21.
K.
Peddireddy
,
P.
Kumar
,
S.
Thutupalli
,
S.
Herminghaus
, and
C.
Bahr
, “
Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions
,”
Langmuir
28
,
12426
(
2012
).
22.
M.
Schmitt
and
H.
Stark
, “
Marangoni flow at droplet interfaces: Three-dimensional solution and applications
,”
Phys. Fluids
28
,
012106
(
2016
).
23.
Z.
Izri
,
M. N.
van der Linden
,
S.
Michelin
, and
O.
Dauchot
, “
Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion
,”
Phys. Rev. Lett.
113
,
248302
(
2014
).
24.
P.
Dwivedi
,
B. R.
Si
,
D.
Pillai
, and
R.
Mangal
, “
Solute induced jittery motion of self-propelled droplets
,”
Phys. Fluids
33
,
022103
(
2021
).
25.
S.
Sundararajan
,
P. E.
Lammert
,
A. W.
Zudans
,
V. H.
Crespi
, and
A.
Sen
, “
Catalytic motors for transport of colloidal cargo
,”
Nano Lett.
8
,
1271
(
2008
).
26.
M.
Li
,
M.
Brinkmann
,
I.
Pagonabarraga
,
R.
Seemann
, and
J. B.
Fleury
, “
Spatiotemporal control of cargo delivery performed by programmable self-propelled Janus droplets
,”
Commun. Phys.
1
,
23
(
2018
).
27.
A. J. T. M.
Mathijssen
,
N.
Figueroa-Morales
,
G.
Junot
,
É.
Clément
,
A.
Lindner
, and
A.
Zöttl
, “
Oscillatory surface rheotaxis of swimming E. coli bacteria
,”
Nat. Commun.
10
,
7
(
2019
).
28.
S.
Campuzano
,
J.
Orozco
,
D.
Kagan
,
M.
Guix
,
W.
Gao
,
S.
Sattayasamitsathit
,
J. C.
Claussen
,
A.
Merkoçi
, and
J.
Wang
, “
Bacterial isolation by lectin-modified microengines
,”
Nano Lett.
12
,
396
(
2012
).
29.
W.
Gao
,
S.
Sattayasamitsathit
,
A.
Merkoc
,
A.
Escarpa
, and
J.
Wang
, “
Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil
,”
ACS Nano
6
,
4445
(
2012
).
30.
J.
Adler
, “
Chemotaxis in bacteria
,”
Science
153
,
708
(
1966
).
31.
B. M.
Friedrich
and
F.
Jülicher
, “
Chemotaxis of sperm cells
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
13256
(
2007
).
32.
C.
Jin
,
C.
Krüger
, and
C. C.
Maass
, “
Chemotaxis and autochemotaxis of self-propelling droplet swimmers
,”
Proc. Natl. Acad. Sci.
114
,
5089
(
2017
).
33.
T.
Goto
,
K.
Nakata
,
K.
Baba
,
M.
Nishimura
, and
Y.
Magariyama
, “
A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary
,”
Biophys. J.
89
,
3771
(
2005
).
34.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
(
2006
).
35.
R. M.
Macnab
, “
Bacterial flagella rotating in bundles: A study in helical geometry
,”
Proc. Natl. Acad. Sci. U. S. A.
74
,
221
(
1977
).
36.
P. D.
Frymier
,
R. M.
Ford
,
H. C.
Berg
, and
P. T.
Cummins
, “
Three-dimensional tracking of motile bacteria on planar surface
,”
Proc. Natl. Acad. Sci. U. S. A.
92
,
6195
(
1995
).
37.
F.
Rühle
,
J.
Blaschke
,
J. T.
Kuhr
, and
H.
Stark
, “
Gravity-induced dynamics of a squirmer microswimmer in wall proximity
,”
New J. Phys.
20
,
025003
(
2018
).
38.
D. J.
Smith
,
E. A.
Gaffney
,
J. R.
Blake
, and
J. C.
Kirkman-Brown
, “
Human sperm accumulation near surfaces: A simulation study
,”
J. Fluid Mech.
621
,
289
(
2009
).
39.
L. J.
Fauci
and
A.
McDonald
, “
Sperm motility in the presence of boundaries
,”
Bull. Math. Biol.
57
,
679
(
1995
).
40.
D.
Giacché
,
T.
Ishikawa
, and
T.
Yamaguchi
, “
Hydrodynamic entrapment of bacteria swimming near a solid surface
,”
Phys. Rev. E
82
,
056309
(
2010
).
41.
H.
Shum
,
E. A.
Gaffney
, and
D. J.
Smith
, “
Modelling bacterial behaviour close to a no-slip plane boundary: The influence of bacterial geometry
,”
Proc. R. Soc. A
466
,
1725
(
2010
).
42.
Z.
Zhang
,
J.
Liu
,
J.
Meriano
,
C.
Ru
,
S.
Xie
,
J.
Luo
, and
Y.
Sun
, “
Human sperm rheotaxis: A passive physical process
,”
Sci. Rep.
6
,
23553
(
2016
).
43.
G.
Jing
,
A.
Zöttl
,
É.
Clément
, and
A.
Lindner
, “
Chirality-induced bacterial rheotaxis in bulk shear flows
,”
Sci. Adv.
6
,
eabb2012
(
2020
).
44.
F. P.
Bretherton
, “
Rheotaxis of spermatozoa
,”
Proc. R. Soc. London, Ser. B
153
,
490
(
1961
).
45.
R.
Rosengarten
,
A.
Klein-Struckmeier
, and
H.
Kirchhoff
, “
Rheotactic behavior of a gliding mycoplasma
,”
J. Bacteriol.
170
,
989
(
1988
).
46.
J.
Palacci
,
S.
Sacanna
,
A.
Abramian
,
J.
Barral
,
K.
Hanson
,
A. Y.
Grosberg
,
D. J.
Pine
, and
P. M.
Chaikin
, “
Artificial rheotaxis
,”
Sci. Adv.
1
,
e1400214
(
2015
).
47.
R.
Baker
,
J. E.
Kauffman
,
A.
Laskar
,
O. E.
Shklyaev
,
M.
Potomkin
,
L.
Dominguez-Rubio
,
H.
Shum
,
Y.
Cruz-Rivera
,
I. S.
Aranson
,
A. C.
Balazs
, and
A.
Sen
, “
Fight the flow: The role of shear in artificial rheotaxis for individual and collective motion
,”
Nanoscale
11
,
10944
(
2019
).
48.
L.
Ren
,
D.
Zhou
,
Z.
Mao
,
P.
Xu
,
T. J.
Huang
, and
T. E.
Mallouk
, “
Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power
,”
ACS Nano
11
,
10591
(
2017
).
49.
J.
Katuri
,
W. E.
Uspal
,
J.
Simmchen
,
A.
Miguel-López
, and
S.
Sánchez
, “
Cross-stream migration of active particles
,”
Sci. Adv.
4
,
eaao1755
(
2018
).
50.
B. R.
Si
,
P.
Patel
, and
R.
Mangal
, “
Self-propelled Janus colloids in shear flow
,”
Langmuir
36
,
11888
(
2020
).
51.
T.
Toyota
,
N.
Maru
,
M. M.
Hanczyc
,
T.
Ikegami
, and
T.
Sugawara
, “
Self-propelled oil droplets consuming ‘fuel’ surfactant
,”
J. Am. Chem. Soc.
131
,
5012
(
2009
).
52.
M. M.
Hanczyc
,
T.
Toyota
,
T.
Ikegami
,
N.
Packard
, and
T.
Sugawara
, “
Fatty acid chemistry at the oil-water interface: Self-propelled oil droplets
,”
J. Am. Chem. Soc.
129
,
9386
(
2007
).
53.
M.
Suga
,
S.
Suda
,
M.
Ichikawa
, and
Y.
Kimura
, “
Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions
,”
Phys. Rev. E
97
,
062703
(
2018
).
54.
V.
Kantsler
,
J.
Dunkel
,
M.
Blayney
, and
R. E.
Goldstein
, “
Correction: Rheotaxis facilitates upstream navigation of mammalian sperm cells
,”
Elife
3
,
e03521
(
2014
).
55.
S.
Das
,
S.
Manda
, and
S.
Chakraborty
, “
Cross-stream migration of a surfactant-laden deformable droplet in a Poiseuille flow
,”
Phys. Fluids
29
,
082004
(
2017
).
56.
O. S.
Pak
,
J.
Feng
, and
H. A.
Stone
, “
Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Peclet numbers
,”
J. Fluid Mech.
753
,
535
(
2014
).
57.
C.
Krüger
,
G.
Klös
,
C.
Bahr
, and
C. C.
Maass
, “
Curling liquid crystal microswimmers: A cascade of spontaneous symmetry breaking
,”
Phys. Rev. Lett.
117
,
048003
(
2016
).
58.
M.
Miesowicz
, “
The Three Coefficients of Viscosity of Anisotropic Liquids
,”
Nature
158
,
27
(
1946
).

Supplementary Material

You do not currently have access to this content.