The hydrodynamic benefits of the protruding eyes and mouth (e&m) of a stingray's smooth body are explored using the penalty immersed boundary method. A self-propelled flexible plate was realized in the present study; a clamped leading edge of the flexible plate was forced into a prescribed harmonic oscillation in the vertical direction but was free to move in the horizontal direction. The e&m was formulated by the superposition of several rigid plates. Simulations without the e&m were also performed for comparison. The pressure distributions and vortical structures around the flexible plate were visualized to characterize the hydrodynamic roles of the e&m. The streamwise and spanwise vortices generated by the e&m function together enhance the average cruising speed and thrust, where the streamwise vortices enhance the negative pressure at the leading edge of the flexible plate and the spanwise vortices increase the pressure difference between the upper and lower sides of the plate. A parametric study was performed to find an optimal shape of the e&m that maximizes the average cruising speed (U¯c) and propulsion efficiency (η) as a function of the spanwise width. The presence of the e&m increased the U¯c and η by more than 20.5% and 10.6%, respectively.

1.
Blevins
,
E. L.
, and
Lauder
,
G. V.
, “
Rajiform locomotion: Three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi
,”
J. Exp. Biol.
215
,
3231
3241
(
2012
).
2.
Blevins
,
E. L.
, and
Lauder
,
G. V.
, “
Swimming near the substrate: A simple robotic model of stingray locomotion
,”
Bioinspiration Biomimetics
8
,
016005
(
2013
).
3.
Bottom Ii
,
R. G.
,
Borazjani
,
I.
,
Blevins
,
E. L.
, and
Lauder
,
G. V.
, “
Hydrodynamics of swimming in stingrays: Numerical simulations and the role of the leading-edge vortex
,”
J. Fluid Mech.
788
,
407
443
(
2016
).
4.
Breder
,
C. M.
, Jr.
, “
The locomotion of fishes
,”
Zoologica
4
,
159
291
(
1926
).
5.
Daniel
,
T. L.
, and
Combes
,
S. A.
, “
Flexible wings and fins: Bending by inertial or fluid-dynamic forces?
,”
Integr. Comp. Biol.
42
,
1044
1049
(
2002
).
6.
Guo
,
Z.
,
Kim
,
S. Y.
, and
Sung
,
H. J.
, “
Pulsating flow and heat transfer in a pipe partially filled with a porous medium
,”
Int. J. Heat Mass Transfer
40
,
4209
4218
(
1997
).
7.
Han
,
J.
,
Zhang
,
Y.
, and
Chen
,
G.
, “
Effects of individual horizontal distance on the three-dimensional bionic flapping multi-wings in different schooling configurations
,”
Phys. Fluids
31
,
041903
(
2019
).
8.
Huang
,
W.-X.
,
Shin
,
S. J.
, and
Sung
,
H. J.
, “
Simulation of flexible filaments in a uniform flow by the immersed boundary method
,”
J. Comput. Phys.
226
,
2206
2228
(
2007
).
9.
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
An immersed boundary method for fluid–flexible structure interaction
,”
Comput. Methods Appl. Mech. Eng.
198
,
2650
2661
(
2009
).
10.
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Three-dimensional simulation of a flapping flag in a uniform flow
,”
J. Fluid Mech.
653
,
301
(
2010
).
11.
Kang
,
H. W.
,
Sung
,
H. J.
,
Lee
,
T. M.
,
Kim
,
D. S.
, and
Kim
,
C. J.
, “
Liquid transfer between two separating plates for micro-gravure-offset printing
,”
J. Micromech. Microeng.
19
,
015025
(
2009
).
12.
Kim
,
K.
,
Baek
,
S. J.
, and
Sung
,
H. J.
, “
An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
138
(
2002
).
13.
Kolmann
,
M. A.
,
Crofts
,
S. B.
,
Dean
,
M. N.
,
Summers
,
A. P.
, and
Lovejoy
,
N. R.
, “
Morphology does not predict performance: Jaw curvature and prey crushing in durophagous stingrays
,”
J. Exp. Biol.
218
,
3941
3949
(
2015
).
14.
Lee
,
I.
, and
Sung
,
H. J.
, “
Development of an array of pressure sensors with PVDF film
,”
Exp. Fluids
26
,
27
35
(
1999
).
15.
Magnuson
,
J. J.
, “
Hydrostatic equilibrium of Euthynnus affinis, a pelagic teleost without a gas bladder
,”
Copeia
1970
,
56
85
.
16.
McComb
,
D. M.
, and
Kajiura
,
S. M.
, “
Visual fields of four batoid fishes: A comparative study
,”
J. Exp. Biol.
211
,
482
490
(
2008
).
17.
Park
,
S. G.
,
Kim
,
B.
, and
Sung
,
H. J.
, “
Self-propelled flexible fin in the wake of a circular cylinder
,”
Phys. Fluids
28
,
111902
(
2016
).
18.
Park
,
S. G.
,
Kim
,
B.
, and
Sung
,
H. J.
, “
Hydrodynamics of a self-propelled flexible fin near the ground
,”
Phys. Fluids
29
,
051902
(
2017
).
19.
Park
,
T. S.
, and
Sung
,
H. J.
, “
Development of a near-wall turbulence model and application to jet impinging heat transfer
,”
Int. J. Heat Fluid Flow
22
,
10
18
(
2001
).
20.
Park
,
S. G.
, and
Sung
,
H. J.
, “
Hydrodynamics of a self-propelled flexible fin in perturbed flows
,”
Mech. Eng. Rev.
5
,
17-00286
(
2018a
).
21.
Park
,
S. G.
, and
Sung
,
H. J.
, “
Hydrodynamics of flexible fins propelled in tandem, diagonal, triangular and diamond configurations
,”
J. Fluid Mech.
840
,
154
(
2018b
).
22.
Parson
,
J. M.
,
Fish
,
F. E.
, and
Nicastro
,
A. J.
, “
Turning performance of batoid rays: Limitations of a rigid body
,”
Integr. Comp. Biol.
49
,
286
(
2009
).
23.
Peskin
,
C. S.
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
24.
Rosenberger
,
L. J.
, “
Pectoral fin locomotion in batoid fishes: Undulation versus oscillation
,”
J. Exp. Biol.
204
,
379
394
(
2001a
).
25.
Rosenberger
,
L. J.
, “
Phylogenetic relationships within the stingray genus Dasyatis (Chondrichthyes: Dasyatidae)
,”
Copeia
2001
,
615
627
(
2001b
).
26.
Rosenberger
,
L. J.
, and
Westneat
,
M. W.
, “
Functional morphology of undulatory pectoral fin locomotion in the stingray Taeniura lymma (Chondrichthyes: Dasyatidae)
,”
J. Exp. Biol.
202
,
3523
3539
(
1999
).
27.
Ryu
,
J.
,
Park
,
S. G.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Hydrodynamics of a three-dimensional self-propelled flexible plate
,”
Phys. Fluids
31
,
021902
(
2019a
).
28.
Ryu
,
J.
, and
Sung
,
H. J.
, “
Intermittent locomotion of a self-propelled plate
,”
Phys. Fluids
31
,
111902
(
2019b
).
29.
Ryu
,
J.
,
Yang
,
J.
,
Park
,
S. G.
, and
Sung
,
H. J.
, “
Phase-mediated locomotion of two self-propelled flexible plates in a tandem arrangement
,”
Phys. Fluids
32
,
041901
(
2020
).
30.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
, “
Review of fish swimming modes for aquatic locomotion
,”
IEEE J. Oceanic Eng.
24
,
237
252
(
1999
).
31.
Shahzad
,
A.
,
Tian
,
F. B.
,
Young
,
J.
, and
Lai
,
J. C.
, “
Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios
,”
Phys. Fluids
30
,
091902
(
2018
).
32.
Shin
,
S. J.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method
,”
Int. J. Numer. Methods Fluids
58
,
263
286
(
2008
).
33.
Sivak
,
J. G.
, “
The accommodative significance of the ‘ramp’ retina of the eye of the stingray
,”
Vision Res.
16
,
945
950
(
1976
).
34.
Smits
,
A. J.
, “
Undulatory and oscillatory swimming
,”
J. Fluid Mech.
874
,
P1
(
2019
).
35.
Summers
,
A. P.
, “
Stiffening the stingray skeleton: An investigation of durophagy in Myliobatid stingrays (Chondrichthyes, Batoidea, Myliobatidae)
,”
J. Morphol.
243
,
113
126
(
2000
).
36.
Taneda
,
S.
, and
Tomonari
,
Y.
, “
An experiment on the flow around a waving plate
,”
J. Phys. Soc. Jpn.
36
,
1683
1689
(
1974
).
37.
Walters
,
V.
, “
Body form and swimming performance in the scombroid fishes
,”
Am. Zool.
2
,
143
149
(
1962
).
38.
Wang
,
Y.
,
Tan
,
J.
, and
Zhao
,
D.
, “
Design and experiment on a biomimetic robotic fish inspired by freshwater stingray
,”
J. Bionic Eng.
12
,
204
216
(
2015
).
39.
Webb
,
P. W.
, “
The biology of fish swimming
,”
Mechanics and Physiology of Animal Swimming
(
Cambridge University Press
,
1994
), Vol.
4562
.
40.
Yang
,
J.
,
Chen
,
Y.
,
Zhang
,
J. D.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
A self-propelled flexible plate with a keel-like structure
,”
Phys. Fluids
33
,
031902
(
2021
).
41.
Yeh
,
P. D.
, and
Alexeev
,
A.
, “
Free swimming of an elastic plate plunging at low Reynolds number
,”
Phys. Fluids
26
,
053604
(
2014
).
42.
Zhang
,
J. D.
,
Sung
,
H. J.
, and
Huang
,
W.-X.
, “
Specialization of tuna: A numerical study on the function of caudal keels
,”
Phys. Fluids
32
,
111902
(
2020
).
43.
Zhu
,
X.
,
He
,
G.
, and
Zhang
,
X.
, “
Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil
,”
Comput. Fluids
97
,
1
20
(
2014
).
You do not currently have access to this content.