The number of patients with neurodegenerative disorders is growing rapidly, and it poses a major concern to discover effective therapies. The well-known deep brain stimulation as a treatment for Parkinson's disease has irredeemable impact on the brain tissue. Magnetothermal stimulation is a good alternative though, it is still invasive due to stereotactic injection for nanoparticle delivery. A good solution to this issue is to take advantage of microvasculature and excite the nanoparticles inside the brain capillaries. Hence, transport and dynamic analysis of blood flow through a brain capillary is crucial. This article presents a two-dimensional theoretical study of a blood flow with magnetic nanoparticles through a capillary when exposed to an alternating magnetic field. The magnetic nanoparticles are localized within the domain over time. The particle transport impacts and the dynamic interactions with the blood flow are elaborately investigated.

1.
M.
Roet
,
S.-A.
Hescham
,
A.
Jahanshahi
,
B. P.
Rutten
,
P. O.
Anikeeva
, and
Y.
Temel
, “
Progress in neuromodulation of the brain: A role for magnetic nanoparticles?
,”
Prog. Neurobiol.
177
,
1
14
(
2019
).
2.
R.
Chen
,
G.
Romero
,
M. G.
Christiansen
,
A.
Mohr
, and
P.
Anikeeva
, “
Wireless magnetothermal deep brain stimulation
,”
Science
347
(
6229
),
1477
1480
(
2015
).
3.
K.
Maier-Hauff
,
R.
Rothe
,
R.
Scholz
,
U.
Gneveckow
,
P.
Wust
,
B.
Thiesen
,
A.
Feussner
 et al, “
Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme
,”
J. Neuro-Oncol.
81
(
1
),
53
60
(
2007
).
4.
M. G.
Christiansen
and
P.
Anikeeva
, “
Magnetic fields for modulating the nervous system
,”
Phys. Today
74
(
2
),
28
34
(
2021
).
5.
M. B.
Graeber
and
P.
Mehraein
, “
Reanalysis of the first case of Alzheimer's disease
,”
Eur. Arch. Psychiatry Clin. Neurosci.
249
(
3
),
S10
S13
(
1999
).
6.
B. A.
MacVicar
and
E. A.
Newman
, “
Astrocyte regulation of blood flow in the brain
,”
Cold Spring Harbor Perspect. Biol.
7
(
5
),
a020388
(
2015
).
7.
E.
Shigetomi
,
S.
Patel
, and
B. S.
Khakh
, “
Probing the complexities of astrocyte calcium signaling
,”
Trends cell Biol.
26
(
4
),
300
312
(
2016
).
8.
K. V.
Kuchibhotla
,
C. R.
Lattarulo
,
B. T.
Hyman
, and
B. J.
Bacskai
, “
Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice
,”
Science
323
(
5918
),
1211
1215
(
2009
).
9.
E.
Kosari
and
K.
Vafai
, “
Synthesis of flow and thermal transport in porous media as applied to biological applications
,”
J. Heat Transfer
143
(
6
),
062701
(
2021
).
10.
A.
AlAmiri
,
K.
Khanafer
, and
K.
Vafai
, “
Fluid-structure interactions in a tissue during hyperthermia
,”
Numer. Heat Transfer, Part A.
66
(
1
),
1
16
(
2014
).
11.
S.
Mahjoob
and
K.
Vafai
, “
Analytical characterization of heat transport through biological media incorporating hyperthermia treatment
,”
Int. J. Heat Mass Transfer
52
(
5–6
),
1608
1618
(
2009
).
12.
D.
Rosenfeld
,
A. W.
Senko
,
J.
Moon
,
I.
Yick
,
G.
Varnavides
,
D.
Gregureć
,
F.
Koehler
 et al, “
Transgene-free remote magnetothermal regulation of adrenal hormones
,”
Sci. Adv.
6
(
15
),
eaaz3734
(
2020
).
13.
S.
Wang
and
K.
Vafai
, “
Analysis of the effect of stent emplacement on LDL transport within an artery
,”
Int. J. Heat Mass Transfer
64
,
1031
1040
(
2013
).
14.
M.
Iasiello
,
K.
Vafai
,
A.
Andreozzi
, and
N.
Bianco
, “
Boundary layer considerations in a multi-layer model for LDL accumulation
,”
Comput. Methods Biomech. Biomed. Eng.
21
(
15
),
803
811
(
2018
).
15.
B.
Chea
,
A.
Bolt
,
M.
Agelin-Chaab
, and
I.
Dincer
, “
Assessment of effectiveness of optimum physical distancing phenomena for COVID-19
,”
Phys. Fluids
33
(
5
),
051903
(
2021
).
16.
H.
Liu
,
S.
He
,
L.
Shen
, and
J.
Hong
, “
Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant
,”
Phys. Fluids
33
(
2
),
023301
(
2021
).
17.
A.
Agrawal
and
R.
Bhardwaj
, “
Probability of COVID-19 infection by cough of a normal person and a super-spreader
,”
Phys. Fluids
33
(
3
),
031704
(
2021
).
18.
A.
Foster
and
M.
Kinzel
, “
Estimating COVID-19 exposure in a classroom setting: A comparison between mathematical and numerical models
,”
Phys. Fluids
33
(
2
),
021904
(
2021
).
19.
D.
Pasias
,
A.
Passos
,
G.
Constantinides
,
S.
Balabani
, and
E.
Kaliviotis
, “
Surface tension driven flow of blood in a rectangular microfluidic channel: Effect of erythrocyte aggregation
,”
Phys. Fluids
32
(
7
),
071903
(
2020
).
20.
X.
Qi
,
S.
Wang
,
S.
Ma
,
K.
Han
, and
X.
Li
, “
Quantitative prediction of flow dynamics and mechanical retention of surface-altered red blood cells through a splenic slit
,”
Phys. Fluids
33
(
5
),
051902
(
2021
).
21.
L.
Zhu
and
K.
Sakai
, “
Simulation of blood flow past distal arteriovenous-graft anastomosis with intimal hyperplasia
,”
Phys. Fluids
33
(
5
),
051905
(
2021
).
22.
O.
Mahian
,
L.
Kolsi
,
M.
Amani
,
P.
Estellé
,
G.
Ahmadi
,
C.
Kleinstreuer
,
J. S.
Marshall
 et al, “
Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory
,”
Phys. Rep.
790
,
1
48
(
2019
).
23.
E.
Kosari
and
K.
Vafai
, “
Thermal stimulation of targeted neural circuits via remotely controlled nano-transducers: A therapy for neurodegenerative disorders
,”
Adv. Heat Transfer
52
,
543
581
(
2020
).
24.
F. M.
White
,
Heat Transfer
(
Addison-Wesley
,
Netherlands
,
1984
).
25.
F. M.
White
,
Fluid Mechanics
(
McGraw Hill
,
Singapore
,
2011
).
26.
F. M.
White
and
I.
Corfield
,
Viscous Fluid Flow
(
McGraw-Hill
,
New York
,
2006
), Vol.
3
.
27.
F. M.
White
,
Heat and Mass Transfer
(
Addison-Wesley
,
United Kingdom
,
1988
).
28.
A.
Albojamal
and
K.
Vafai
, “
Analysis of particle deposition of nanofluid flow through porous media
,”
Int. J. Heat Mass Transfer
161
,
120227
(
2020
).
29.
P. G. T.
Saffman
, “
The lift on a small sphere in a slow shear flow
,”
J. Fluid Mech.
22
(
2
),
385
400
(
1965
).
30.
M.-M.
Kim
and
A. L.
Zydney
, “
Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration
,”
J. Colloid Interface Sci.
269
(
2
),
425
431
(
2004
).
31.
L.
Talbot
,
R. K.
Cheng
,
R. W.
Schefer
, and
D. R.
Willis
, “
Thermophoresis of particles in a heated boundary layer
,”
J. Fluid Mech.
101
(
4
),
737
758
(
1980
).
32.
S. M.
Vanaki
,
P.
Ganesan
, and
H. A.
Mohammed
, “
Numerical study of convective heat transfer of nanofluids: A review
,”
Renewable Sustainable Energy Rev.
54
,
1212
1239
(
2016
).
33.
A.
Albojamal
and
K.
Vafai
, “
Analysis of single phase, discrete and mixture models, in predicting nanofluid transport
,”
Int. J. Heat Mass Transfer
114
,
225
237
(
2017
).
34.
S.
Lorthois
and
F.
Cassot
, “
Fractal analysis of vascular networks: Insights from morphogenesis
,”
J. Theor. Biol.
262
(
4
),
614
633
(
2010
).
35.
F.
Cassot
,
F.
Lauwers
,
C.
Fouard
,
S.
Prohaska
, and
V.
Lauwers-Cances
, “
A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex
,”
Microcirculation
13
(
1
),
1
18
(
2006
).
36.
H.
Sarin
, “
Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability
,”
J. Angiog. Res.
2
(
1
),
14
19
(
2010
).
37.
M.
Peyrounette
,
Y.
Davit
,
M.
Quintard
, and
S.
Lorthois
, “
Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex
,”
PLoS One
13
(
1
),
e0189474
(
2018
).
38.
C. G.
Caro
,
T. J.
Pedley
,
R. C.
Schroter
, and
W. A.
Seed
,
The Mechanics of the Circulation
(
Cambridge University Press
,
2012
).
39.
H. K.
Kimelberg
, “
Water homeostasis in the brain: Basic concepts
,”
Neuroscience
129
(
4
),
851
860
(
2004
).
40.
L. M.
Cancel
,
K.
Arias
,
M.
Bikson
, and
J. M.
Tarbell
, “
Direct current stimulation of endothelial monolayers induces a transient and reversible increase in transport due to the electroosmotic effect
,”
Sci. Rep.
8
(
1
),
1
13
(
2018
).
41.
D. M.
Eckmann
,
S.
Bowers
,
M.
Stecker
, and
A. T.
Cheung
, “
Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity
,”
Anesth. Analg.
91
(
3
),
539
545
(
2000
).
42.
S. J.
Hund
,
M. V.
Kameneva
, and
J. F.
Antaki
, “
A quasi-mechanistic mathematical representation for blood viscosity
,”
Fluids
2
(
1
),
10
(
2017
).
43.
E.
Kosari
and
K.
Vafai
, “
Thermal tissue damage analysis for magnetothermal neuromodulation and lesion size minimization
,”
Brain Multiphys.
1
,
100014
(
2020
).
44.
M.
Zakharov
and
M.
Sadovsky
, “
The role of blood circulatory system in thermal regulation of animals explained by entropy production analysis
,” preprint arXiv:1308.3663 (
2013
).
45.
C. L.
Snow
,
Q.
Shi
,
J.
Boerio-Goates
, and
B. F.
Woodfield
, “
Heat capacity studies of nanocrystalline magnetite (Fe3O4)
,”
J. Phys. Chem. C
114
(
49
),
21100
21108
(
2010
).
46.
A. H.
Morrish
and
S. P.
Yu
, “
Dependence of the coercive force on the density of some iron oxide powders
,”
J. Appl. Phys.
26
(
8
),
1049
1055
(
1955
).
47.
P.
Jamilpanah
,
H.
Pahlavanzadeh
, and
A.
Kheradmand
, “
Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure
,”
Heat Mass Transfer
53
(
4
),
1343
1354
(
2017
).
48.
R.
Chen
,
M. G.
Christiansen
, and
P.
Anikeeva
, “
Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization
,”
ACS Nano
7
(
10
),
8990
9000
(
2013
).
49.
C.-H.
Hsu
,
H.-H.
Vu
, and
Y.-H.
Kang
, “
The rheology of blood flow in a branched arterial system with three-dimensional model: A numerical study
,”
J. Mech.
25
(
4
),
N21–N2
4
(
2009
)NN.
You do not currently have access to this content.