We study the amplification of shallow-water waves in the course of their propagation in a duct of a variable cross section with a spatially inhomogeneous flow. We derive the basic set of equations for the wave propagation and present the asymptotic analysis of solutions in the neighborhood of critical points where the wave speed coincides with the speed of the current. The considered model represents a kinematic analog of astrophysical event horizons occurring in the vicinity of the black holes (BH) or white holes (WH). We study then the wave propagation in the flow with two critical points (two horizons) when the flow transits first the BH horizon and then the WH one or vice versa. In the former case, the region between the critical points mimics a wormhole in general relativity. The theoretical results are illustrated by numerical calculations of wave propagation through the critical points. It is shown that the wave amplification after passing the active zone between the horizons takes place in BH–WH arrangements only and can occur for different relationships between the subcritical and supercritical flow velocities. The frequency dependence of the amplification factor is obtained and quantified in terms of the velocity ratio within and outside the “wormhole domain.”

1.
W. G.
Unruh
, “
Experimental black-hole evaporation?
,”
Phys. Rev. Lett.
46
,
1351
1353
(
1981
).
2.
Artificial Black Holes
, edited by
M.
Novello
,
M.
Visser
, and
G.
Volovik
(
World Scientific
,
Singapore
,
2002
).
3.
C.
Barceló
,
S.
Liberati
, and
M.
Visser
, “
Analogue gravity
,”
Living Rev. Relativ.
14
,
3
159
(
2011
).
4.
J. A.
Lawrence
,
S.
Weinfurtner
,
E. W.
Tedford
,
M. C. J.
Penrice
, and
W. G.
Unruh
, “
Waves and currents: Hawking radiation in the hydraulic laboratory
?,” in
Environmental Fluid Mechanics
, edited by
W.
Rodi
and
M.
Uhlmann
(
CRC Press
,
Boca Raton
,
2012
), Chap. 6, pp.
107
119
.
5.
W. G.
Unruh
, “
Map and territory in physics: The role of an analogy in black hole physics
,” in
The Map and the Territory–Exploring the Foundations of Science
, edited by
S.
Wuppuluri
and
F. A.
Doria
(
Springer
,
New York
,
2018
), pp.
233
243
.
6.
L.-P.
Euvé
,
F.
Michel
,
R.
Parentani
,
T.
Philbin
, and
G.
Rousseaux
, “
Observation of noise correlated by the Hawking effect in a water tank
,”
Phys. Rev. Lett.
117
,
121301
(
2016
).
7.
L.-P.
Euvé
and
G.
Rousseaux
, “
Classical analogue of an interstellar travel through a hydrodynamic wormhole
,”
Phys. Rev. D
96
,
064042
(
2017
).
8.
L.-P.
Euvé
,
S.
Robertson
,
N.
James
,
A.
Fabbri
, and
G.
Rousseaux
, “
Scattering of co-current surface waves on an analogue black hole
,”
Phys. Rev. Lett.
124
,
141101
(
2020
).
9.
C.
Peloquin
,
L.-P.
Euvé
,
T.
Philbin
, and
G.
Rousseaux
, “
Analog wormhole and black hole laser effects in hydrodynamics
,”
Phys. Rev. D
93
,
084032
(
2016
).
10.
R.
Schützhold
and
W. G.
Unruh
, “
Gravity wave analogs of black holes
,”
Phys. Rev. D
66
,
044019
(
2002
).
11.
M. J.
Jacquet
,
S.
Weinfurtner
, and
F.
König
, “
The next generation of analogue gravity experiments
,”
Trans. R. Soc. London A
378
,
2177
(
2020
).
12.
S. W.
Hawking
, “
Particle creation by black holes
,”
Commun. Math. Phys.
43
,
199
220
(
1975
).
13.
W. G.
Unruh
, “
Notes on black-hole evaporation
,”
Phys. Rev. D
14
(
4
),
870
892
(
1976
).
14.
S.
Churilov
,
A.
Ermakov
, and
Y.
Stepanyants
, “
Wave scattering in spatially inhomogeneous currents
,”
Phys. Rev. D
96
,
064016
(
2017
).
15.
L.-P.
Euvé
,
F.
Michel
,
R.
Parentani
, and
G.
Rousseaux
, “
Wave blocking and partial transmission in subcritical flows over an obstacle
,”
Phys. Rev. D
91
,
024020
(
2015
).
16.
T.
Torres
,
S.
Patrick
,
A.
Coutant
,
M.
Richartz
,
E. W.
Tedford
, and
S.
Weinfurtner
, “
Rotational superradiant scattering in a vortex flow
,”
Nat. Phys.
13
,
833
836
(
2017
).
17.
Y.
Aurégan
,
P.
Fromholz
,
F.
Michel
,
V.
Pagneux
, and
R.
Parentani
, “
Slow sound in a duct, effective transonic flows, and analog black holes
,”
Phys. Rev. D
92
,
081503(R)
(
2015
).
18.
A.
Coutant
,
Y.
Aurégan
, and
V.
Pagneux
, “
Slow sound laser in lined flow ducts
,”
J. Acoust. Soc. Am.
146
,
2632
(
2019
).
19.
Y.
Aurégan
and
V.
Pagneux
, “
Slow sound in lined flow ducts
,”
J. Acoust. Soc. Am.
138
,
605
613
(
2015
).
20.
F.
Calogero
,
Variable Phase Approach to Potential Scattering
(
Academic Press
,
New York
,
1967
).
21.
V. V.
Babikov
, “
The phase-function method in quantum mechanics
,”
Sov. Phys. Usp.
10
,
271
(
1967
).
22.
M. S.
Morris
,
K. S.
Thorne
, and
U.
Yurtsever
, “
Wormholes, time machines, and the weak energy condition
,”
Phys. Rev. Lett.
61
,
1446
(
1988
).
23.
A. L.
Fabrikant
and
Y. A.
Stepanyants
,
Propagation of Waves in Shear Flows
(
World Scientific
,
Singapore
,
1998
).
24.
S.
Corley
and
T.
Jacobson
, “
Black hole lasers
,”
Phys. Rev. D
59
,
124011
(
1999
).
25.
U.
Leonhardt
and
T. G.
Philbin
, in
Quantum Analogues: From Phase Transitions to Black Holes and Cosmology
, edited by
W. G.
Unruh
and
R.
Schützhold
(
Springer-Verlag
,
Berlin
,
2007
), p.
229
.
26.
D.
Faccio
,
T.
Arane
,
M.
Lamperti
, and
U.
Leonhardt
, “
Optical black hole lasers
,”
Classical Quantum Gravity
29
(
22
),
224009
(
2012
).
27.
J.
Steinhauer
, “
Observation of self-amplifying Hawking radiation in an analogue black-hole laser
,”
Nat. Phys.
10
,
864
(
2014
).
28.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Butterworth-Heinemann
,
Burlington, MA
,
1987
).
29.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers
(
McGraw-Hill
,
New York
,
1978
).
30.
M. E.
McIntyre
, “
On the ‘wave momentum’ myth
,”
J. Fluid Mech.
106
,
331
(
1981
).
31.
P.
Maïssa
,
G.
Rousseaux
, and
Y.
Stepanyants
, “
Negative energy waves in shear flow with a linear profile
,”
Eur. J. Mech. B
56
,
192
(
2016
).
32.
F. W. J.
Olver
,
Asymptotics and Special Functions
(
Academic Press
,
New York/London
,
1974
).
33.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 7th ed. (
Academic Press
,
Amsterdam
,
2007
).
You do not currently have access to this content.