In this work, we analytically and numerically investigate the types of stationary gasdynamic waves formed in a heat-releasing medium with isentropic (acoustic) instability. As the mathematical model, the system of one-dimensional gasdynamic equations is used, in which the heating and cooling processes are taken into account using the generalized heat-loss function. Our analysis reveals that the type of stationary structures depends on their velocity W and heating/cooling processes acting in the medium. In an isentropically unstable medium, it is shown that the type of structures depends on whether they propagate faster or slower than the critical velocity Wcr. If W>Wcr, a shock wave is formed, in which, after the shock-wave compression, the gas expands to a stationary value. The characteristic size of the expansion region depends on the characteristic heating time, which is determined by the specific type of the heat-loss function. If W<Wcr, the shock wave turns out to be unstable and decays into a sequence of autowave (self-sustaining) pulses. The amplitude and velocity (W=Wcr) of the autowave pulse, found analytically in the article, are also determined by the type of the heat-loss function. The comparison of analytical predictions of the developed method with the results of nonlinear equation previously obtained using the perturbation theory, as well as with the numerical simulations, confirms the high accuracy of the method.

1.
L.
Deharveng
,
A.
Zavagno
,
F.
Schuller
,
J.
Caplan
,
M.
Pomares
, and
C.
De Breuck
, “
Star formation around RCW 120, the perfect bubble
,”
Astron. Astrophys.
496
,
177
190
(
2009
).
2.
A.
Zavagno
,
M.
Pomares
,
L.
Deharveng
,
T.
Hosokawa
,
D.
Russeil
, and
J.
Caplan
, “
Triggered star formation on the borders of the galactic H II region RCW 120
,”
Astron. Astrophys.
472
,
835
846
(
2007
).
3.
G. J.
Ferland
,
W. J.
Henney
,
C. R.
O'Dell
,
R. L.
Porter
,
P. A. M.
Van Hoof
, and
R. J. R.
Williams
, “
Pumping up the [NI] nebular lines
,”
Astrophys. J.
757
,
79
(
2012
).
4.
D. Y.
Kolotkov
,
V. M.
Nakariakov
, and
D. I.
Zavershinskii
, “
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
,”
Astron. Astrophys.
628
,
A133
(
2019
).
5.
V. M.
Nakariakov
and
D. Y.
Kolotkov
, “
Magnetohydrodynamic waves in the solar corona
,”
Annu. Rev. Astron. Astrophys.
58
,
441
481
(
2020
).
6.
D. Y.
Kolotkov
,
T. J.
Duckenfield
, and
V. M.
Nakariakov
, “
Seismological constraints on the solar coronal heating function
,”
Astron. Astrophys.
644
,
A33
(
2020
).
7.
T.
Wang
,
L.
Ofman
,
D.
Yuan
,
F.
Reale
,
D. Y.
Kolotkov
, and
A. K.
Srivastava
, “
Slow-mode magnetoacoustic waves in coronal loops
,”
Space Sci. Rev.
217
,
34
(
2021
).
8.
N.
Claes
and
R.
Keppens
, “
Thermal stability of magnetohydrodynamic modes in homogeneous plasmas
,”
Astron. Astrophys.
624
,
A96
(
2019
).
9.
A. A.
Borissov
and
O. V.
Sharypov
, “
Self-sustained solitary waves in non-equilibrium media
,”
J. Fluid Mech.
257
,
451
461
(
1993
).
10.
J. F.
Clarke
, “
Chemical amplification at the wave head of a finite amplitude gasdynamic disturbance
,”
J. Fluid Mech.
81
,
257
264
(
1977
).
11.
O. V.
Sharypov
and
I. S.
Anufriev
, “
Model of evolution of finite-amplitude perturbations in a two-phase reactive system
,”
Heat Transfer Res.
43
,
109
122
(
2012
).
12.
G.
Sharpe
, “
The structure of planar and curved detonation waves with reversible reactions
,”
Phys. Fluids
12
,
3007
3020
(
2000
).
13.
K. C. K.
Uy
,
L.
Shi
,
J.
Hao
, and
C.-Y.
Wen
, “
Linear stability analysis of one-dimensional detonation coupled with vibrational relaxation
,”
Phys. Fluids
32
,
126101
(
2020
).
14.
A.
Sow
,
S.
Lau-Chapdelaine
, and
M.
Radulescu
, “
The effect of the polytropic index on the structure of gaseous detonations
,”
Proc. Combust. Inst.
38
,
3633
(
2021
).
15.
I. V.
Basargin
and
G. I.
Mishin
, “
Precursor of shock wave in glow discharge plasma
,”
Sov. Tech. Phys. Lett.
15
,
311
313
(
1989
).
16.
P.
Bletzinger
,
B. N.
Ganguly
,
D.
Van Wie
, and
A.
Garscadden
, “
Plasmas in high speed aerodynamics
,”
J. Phys. D: Appl. Phys.
38
,
R33
(
2005
).
17.
B. N.
Ganguly
,
P.
Bletzinger
, and
A.
Garscadden
, “
Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas
,”
Phys. Lett. A
230
,
218
222
(
1997
).
18.
A.
Klimov
,
V.
Bityurin
, and
Y.
Serov
, “
Non-thermal approach in plasma aerodynamics
,”
AIAA Paper No. 2001-0348.
19.
P.
Gupta
,
R.
Chaturvedi
, and
L.
Singh
, “
The propagation of weak shock waves in non-ideal gas flow with radiation
,”
Eur. Phys. J. Plus
135
,
17
(
2020
).
20.
M.
Singh
and
R.
Arora
, “
Propagation of one-dimensional planar and nonplanar shock waves in nonideal radiating gas
,”
Phys. Fluids
33
,
046106
(
2021
).
21.
G. B.
Field
, “
Thermal instability
,”
Astrophys. J.
142
,
531
567
(
1965
).
22.
K. V.
Krasnobaev
,
R. R.
Tagirova
,
S. I.
Arafailov
, and
G. Y.
Kotova
, “
Evolution and saturation of autowaves in photodissociation regions
,”
Astron. Lett.
42
,
460
473
(
2016
).
23.
K. V.
Krasnobaev
and
R. R.
Tagirova
, “
Isentropic thermal instability in atomic surface layers of photodissociation regions
,”
Mon. Not. R. Astron. Soc.
469
,
1403
1413
(
2017
).
24.
M.
Carbonell
,
R.
Oliver
, and
J. L.
Ballester
, “
Time damping of linear non-adiabatic magnetohydrodynamic waves in an unbounded plasma with solar coronal properties
,”
Astron. Astrophys.
415
,
739
750
(
2004
).
25.
G.
Del Zanna
,
K.
Dere
,
P.
Young
, and
E.
Landi
, “
Chianti—An atomic database for emission lines. XVI. Version 10, further extensions
,”
Astrophys. J.
909
,
38
(
2021
).
26.
K.
Dere
,
E.
Landi
,
H.
Mason
,
B. M.
Fossi
, and
P.
Young
, “
Chianti—An atomic database for emission lines. I. Wavelengths greater than 50 Å
,”
Astron. Astrophys. Suppl. Ser.
125
,
149
173
(
1997
).
27.
N. E.
Molevich
,
D. I.
Zavershinsky
,
R. N.
Galimov
, and
V. G.
Makaryan
, “
Traveling self-sustained structures in interstellar clouds with the isentropic instability
,”
Astrophys. Space Sci.
334
,
35
44
(
2011
).
28.
N. E.
Molevich
and
A. N.
Oraevskii
, “
Second viscosity in thermodynamically nonequilibrium media
,”
Zh. Eksp. Teor. Fiz.
94
,
128
(
1988
)
N. E.
Molevich
and
A. N.
Oraevskii
, [
J. Exp. Theor. Phys.
67
,
504
(
1988
)].
29.
G. B.
Field
,
D. W.
Goldsmith
, and
H. J.
Habing
, “
Cosmic-ray heating of the interstellar gas
,”
Astrophys. J.
155
,
L149
(
1969
).
30.
S. B.
Pikel'Ner
, “
Heating of the interstellar gas by subcosmic rays, and the formation of clouds
,”
Sov. Astron.
11
,
737
(
1968
).
31.
V. B.
Baranov
and
K. V.
Krasnobaev
,
Hydrodynamic Theory of a Cosmic Plasma
(
Izdatel Nauka
,
Moscow
,
1977
).
32.
S. A.
Kaplan
and
S. B.
Pikelner
,
The Interstellar Medium
(
Harvard University Press
,
2013
).
33.
M.
Nejad-Asghar
, “
Formation of fluctuations in a molecular slab via isobaric thermal instability
,”
Mon. Not. R. Astron. Soc.
379
,
222
228
(
2007
).
34.
E. N.
Parker
, “
Instability of thermal fields
,”
Astrophys. J.
117
,
431
436
(
1953
).
35.
B. V.
Somov
,
N. S.
Dzhalilov
, and
J.
Staude
, “
Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma
,”
Astron. Lett.
33
,
309
318
(
2007
).
36.
H.
Stiele
,
H.
Lesch
, and
F.
Heitsch
, “
Thermal instability in a weakly ionized plasma
,”
Mon. Not. R. Astron. Soc.
372
,
862
868
(
2006
).
37.
B. V.
Somov
,
Plasma Astrophysics, Part I: Fundamentals and Practice
(
Springer Science and Business Media
,
2012
), Vol.
391
.
38.
S. A. E. G.
Falle
,
C. J.
Wareing
, and
J. M.
Pittard
, “
Thermal instability revisited
,”
Mon. Not. R. Astron. Soc.
492
,
4484
4499
(
2020
).
39.
J. W.
Strutt
,
The Theory of Sound, Cambridge Library Collection-Physical Sciences
(
Cambridge University Press
,
Cambridge
,
2011
), Vol.
2
.
40.
S.
Ibanez
,
H.
Miguel
,
D.
Sanchez
, and
M.
Nestor
, “
Propagation of sound and thermal waves in a plasma with solar abundances
,”
Astrophys. J.
396
,
717
724
(
1992
).
41.
N. E.
Molevich
,
D. S.
Ryashchikov
, and
D. I.
Zavershinskiy
, “
Influence of thermal conduction on properties of MHD waves in thermally unstable plasma
,”
Magnetohydrodynamics
52
,
199
208
(
2016
).
42.
V. M.
Nakariakov
,
C. A.
Mendoza-Briceño
, and
M. H.
Ibanez S.
, “
Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas
,”
Astrophys. J.
528
,
767
775
(
2000
).
43.
D. I.
Zavershinskii
,
D. Y.
Kolotkov
,
V. M.
Nakariakov
,
N. E.
Molevich
, and
D. S.
Ryashchikov
, “
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
,”
Phys. Plasmas
26
,
082113
(
2019
).
44.
D. I.
Zavershinskiy
and
N. E.
Molevich
, “
Parametrical amplification of Alfvén waves in heat-releasing ionized media with magnetoacoustic instability
,”
Astrophys. Space Sci.
358
,
1
13
(
2015
).
45.
B. P.
Flannery
and
W. H.
Press
, “
An ionization-coupled acoustic instability of the interstellar medium
,”
Astrophys. J.
231
,
688
696
(
1979
).
46.
M.
Oppenheimer
, “
Isentropic instabilities in the interstellar gas
,”
Astrophys. J.
211
,
400
403
(
1977
).
47.
T.
Yoneyama
, “
Thermal instability in reacting gas
,”
Publ. Astron. Soc. Jpn.
25
,
349
373
(
1973
).
48.
A. E.
Dudorov
,
C. E.
Stepanov
,
S. O.
Fomin
, and
S. A.
Khaibrakhmanov
, “
Magnetic ionization–thermal instability
,”
Mon. Not. R. Astron. Soc.
487
,
942
951
(
2019
).
49.
M. K.
Parikh
and
F.
Wilczek
, “
An action for black hole membranes
,”
Phys. Rev. D
58
,
064011
(
1998
).
50.
I. E.
Suleimenov
,
V. M.
Aushev
,
E. A.
Tulebekov
, and
I. A.
Antoshchuk
, “
Effect of resonance phenomena on the wave structure of the middle atmosphere
,”
Geomagn. Aeron.
46
,
371
381
, (
2006
).
51.
D. I.
Zavershinskii
,
N. E.
Molevich
,
D. S.
Riashchikov
, and
S. A.
Belov
, “
Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability
,”
Phys. Rev. E
101
,
043204
(
2020
).
52.
Y. B.
Zel'dovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Academic Press
,
New York
,
1966
), Vol.
1
.
53.
K. V.
Krasnobaev
,
N. E.
Sysoev
, and
V. Y.
Tarev
, “
Properties of nonlinear waves and shock waves in the vicinity of hot stars
,”
Nuclear Physics, Cosmic Rays, Astronomy
(
Mosk. Gos. University
,
Moscow
,
1994
),
pp. 222
230
(in Russian).
54.
A.
Kelly
and
V. M.
Nakariakov
, “
Coronal seismology by MHD autowaves
,” in
Proceedings of the SOHO 13-Waves, Oscillations and Small-Scale Transient Events in the Solar Atmosphere: A Joint View from SOHO and TRACE
, 29 September–3 October 2003,
Palma de Mallorca
,
Balearic Islands, Spain
, compiled by
H.
Lacoste
(
ESA
,
2004
), No. ESA SP-547.
55.
C. A.
Mendoza-Briceño
,
M. H.
Ibáñez
, and
V. M.
Nakariakov
, “
Nonlinear magneto-acoustic waves in the solar atmosphere
,”
Dyn. Atmos. Oceans
34
,
399
409
(
2001
).
56.
E.
Ott
,
W. M.
Manheimer
,
D. L.
Book
, and
J. P.
Boris
, “
Model equations for mode coupling saturation in unstable plasmas
,”
Phys. Fluids
16
,
855
862
(
1973
).
57.
R.
Chin
,
E.
Verwichte
,
G.
Rowlands
, and
V. M.
Nakariakov
, “
Self-organization of magnetoacoustic waves in a thermally unstable environment
,”
Phys. Plasmas
17
,
032107
(
2010
).
58.
V. G.
Makaryan
and
N. E.
Molevich
, “
Structure of a gasdynamic disturbance in a thermodynamically nonequilibrium medium with a power-law relaxation model
,”
Fluid Dyn.
39
,
836
845
(
2004
).
59.
R.
Galimov
and
N.
Molevich
, “
Acoustics of non-equilibrium chemically active mixture with external source of the reagents
,”
Acta Acust. Acust.
97
(
Suppl. 1
),
69
(
2011
).
60.
D. I.
Zavershinsky
and
N. E.
Molevich
, “
A magnetoacoustic autowave pulse in a heat-releasing ionized gaseous medium
,”
Tech. Phys. Lett.
39
,
676
679
(
2013
).
61.
V. G.
Makaryan
and
N. E.
Molevich
, “
Stationary shock waves in nonequilibrium media
,”
Plasma Sources Sci. Technol.
16
,
124
131
(
2007
).
62.
R. N.
Galimov
and
N. E.
Molevich
, “
Structure and bifurcations of plane shock waves in a vibrationally excited gas with an external pumping source
,”
Fluid Dyn.
44
,
158
169
(
2009
).
63.
R. N.
Galimov
,
V. G.
Makaryan
, and
N. E.
Molevich
, “
Temperature profile at the front of a shock wave propagating in a vibrationally excited stationary nonequilibrium gas
,”
Tech. Phys.
51
,
1644
1646
(
2006
).
64.
R. N.
Galimov
,
N. E.
Molevich
, and
V. G.
Makaryan
, “
The influence of stationary vibrational non-equilibrium on the stability and the structure of shock waves
,” in
Proceedings of the 3rd European Conference for Aero Space Sciences
(
2009
).
65.
N. E.
Molevich
and
D. S.
Ryashchikov
, “
Autowave pulse in a medium with the heating/cooling misbalance and an arbitrary thermal dispersion
,”
Tech. Phys. Lett.
46
,
637
640
(
2020
).
66.
L. D.
Landau
and
E. M.
Lifshits
,
Fluid Mechanics
, Course of Theoretical Physics, 2nd ed. (
Butterworth-Heinemann
,
Oxford
,
1987
), Vol.
6
, p.
xiii
.
67.
E.
Kustova
,
M.
Mekhonoshina
, and
A.
Kosareva
, “
Relaxation processes in carbon dioxide
,”
Phys. Fluids
31
,
046104
(
2019
).
68.
D. I.
Kabanov
and
A. R.
Kasimov
, “
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
,”
Phys. Fluids
30
,
036103
(
2018
).
69.
M. I.
Radulescu
, “
On the shock change equations
,”
Phys. Fluids
32
,
056106
(
2020
).
70.
I. B.
Zeldovich
and
A. S.
Kompaneets
,
Theory of Detonation
(
Academic Press
,
New York
,
1960
).
71.
Y.
Liu
,
J.
Yin
, and
Z.
Wang
, “
Study on the overdriven detonation wave propagation in double-layer shaped charge
,”
Phys. Fluids
31
,
092110
(
2019
).
72.
J. M.
Stone
,
T. A.
Gardiner
,
P.
Teuben
,
J. F.
Hawley
, and
J. B.
Simon
, “
Athena: A new code for astrophysical MHD
,”
Astrophys. J. Suppl. Ser.
178
,
137
(
2008
).
You do not currently have access to this content.