The need to increase the payload capacity of the rockets motivates the development of high-power rocket engines. For a chemical propulsion system, this results in an increasing thermal load on the structure, especially the combustion chamber and nozzle must be able to withstand the extreme thermal load caused by high-temperature and high-pressure combustion gas. In order to protect the structure from the effect of increasing heat flux, it is necessary to counteract such effect with more advanced thermal management technology. This requires us to accurately predict the aerodynamic heating of the structure by high-temperature and high-speed combustion gas. In this study, a high-temperature combustion gas tunnel developed in the laboratory is used to produce high-speed combustion gas. Combined with the results of numerical calculation, the flow and aerodynamic heating characteristics of air and hydrogen–oxygen combustion gas under the same total temperature and pressure are analyzed and compared. The comparison revealed that the combustion gas flow in the nozzle has higher static temperature, velocity, and smaller Mach number. When the combustion gas flows around the sphere, the shock standoff distance and stagnation pressure are smaller than those of air, and the wall heat flux is much larger than that of air. The active chemical reaction in the combustion gas makes the aerodynamic heating of the structure more severe. Finally, through the analysis of a large amount of data, a semi-empirical formula for the heat flux of the stagnation point heated by a high-speed hydrogen and oxygen equivalent ratio combustion gas is obtained.

1.
G. P.
Sutton
,
History of Liquid Propellant Rocket Engines
(
AIAA
,
Reston, VA
,
2006
), Chap. 3.
2.
G. P.
Sutton
and
O.
Biblarz
,
Rocket Propulsion Elements
(
John Wiley & Sons
,
New York
,
2016
).
3.
D. R.
Bartz
, “
A simple equation for rapid estimation of rocket nozzle convective heat transfer coefficients
,”
J. Jet Propul.
27
,
49
51
(
1957
).
4.
S.
Ludescher
and
H.
Olivier
, “
Experimental investigations of film cooling in a nozzle under rocket-engine-like flow conditions
,”
AIAA J.
57
(
3
),
1172
1183
(
2019
).
5.
M. A.
DeRidder
and
W. E.
Anderson
, “
Heat flux and pressure profiles in a oxygen/hydrogen multielement rocket combustor
,”
J. Propul. Power
26
(
4
),
696
705
(
2010
).
6.
P.
Nikolaos
and
P.
Lukas
, “
Wall heat flux evaluation in regeneratively cooled rocket thrust chambers
,”
J. Thermophys. Heat Transfer
35
(
1
),
127
141
(
2021
).
7.
N.
Perakis
,
D.
Rahn
,
O. J.
Haidn
, and
D.
Eiringhaus
, “
Heat transfer and combustion simulation of seven-element O2/CH4 rocket combustor
,”
J. Propul. Power
35
(
6
),
1080
1097
(
2019
).
8.
M. N.
Ozisik
,
Inverse Heat Transfer: Fundamentals and Applications
(
CRC Press
,
Boca Raton, FL
,
2000
), Chap. 2.
9.
C.-H.
Huang
and
C.-T.
Lee
, “
An inverse problem to estimate simultaneously six internal heat fluxes for a square combustion chamber
,”
Int. J. Therm. Sci.
88
,
59
76
(
2015
).
10.
N.
Perakis
,
J.
Strauß
, and
O. J.
Haidn
, “
Heat flux evaluation in a multi-element CH4/O2 rocket combustor using an inverse heat transfer method
,”
Int. J. Heat Mass Transfer
142
,
118425
(
2019
).
11.
J.
Haemisch
,
D.
Suslov
, and
M.
Oschwald
, “
Experimental analysis of heat transfer deterioration and pseudoboiling phenomena in a methane cooled combustion chamber at real conditions
,” AIAA Paper No. 2018-4943 (
2018
).
12.
N.
Perakis
and
O. J.
Haidn
, “
Inverse heat transfer method applied to capacitively cooled rocket thrust chambers
,”
Int. J. Heat Mass Transfer
131
,
150
166
(
2019
).
13.
P.
Narsai
and
E.
Momanyi
,“
Indirect heat flux measurements at the nozzle throat of a hybrid rocket motor
,” in
51st AIAA/SAE/ASEE Joint Propulsion Conference
(
2015
).
14.
B.
Betti
,
D.
Bianchi
,
F.
Nasuti
, and
E.
Martelli
, “
Chemical reaction effects on heat loads of CH4/O2 and H2/O2 rockets
,”
AIAA J.
54
(
5
),
1693
1703
(
2016
).
15.
D.
Suslov
 et al, “
Experimental investigation and CFD-simulation of the cooling in an O2-CH4 subscale combustion chamber
,” in
Space Propulsion Conference
(
2012
).
16.
N.
Perakis
and
O. J.
Haidn
, “
Wall heat transfer prediction in CH4/O2 and H2/O2 rocket thrust chambers using a non-adiabatic flamelet model
,”
Acta Astronaut.
174
,
254
269
(
2020
).
17.
N.
Peters
, “
Laminar flamelet concepts in turbulent combustion
,” in
Symposium (International) on Combustion
(
Elsevier
,
1988
), Vol.
21
, pp.
1231
1250
.
18.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
Cambridge
,
2000
).
19.
J.
Warnatz
, in
Combustion Chemistry
, edited by
W. C.
Gardiner
, Jr.
(
Springer
,
New York
,
1984
).
20.
M.
Frenklach
and
J.
Warnatz
, “
Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame
,”
Combust. Sci. Technol.
51
,
265
(
1987
).
21.
M. F.
Romig
, “
Stagnation point heat transfer for hypersonic flow
,”
J. Jet Propul.
26
(
12
),
1098
1101
(
1956
).
22.
J. A.
Fay
and
F. R.
Riddell
, “
Theory of stagnation point heat transfer in dissociated air
,”
J. Aerosp. Sci.
25
(
2
),
73
85
(
1958
).
23.
N. H.
Kemp
,
R. H.
Rose
, and
R. W.
Detra
, “
Laminar heat transfer around blunt bodies in dissociated air
,”
J. Aerosp. Sci.
26
(
7
),
421
430
(
1959
).
24.
C. G.
Miller
, “
Experimental and predicted heating distributions for bionics at incidence in air at Mach 10
,”
Report No. NASA-TP-2334
(
1984
).
25.
J. P.
Li
,
S. Z.
Zhang
,
J. P.
Yu
 et al, “
A detonation tunnel with high temperature burnt gas as test medium
,”
Phys. Gases
3
(
6
),
1
8
(
2018
).
26.
H. R.
Yu
,
B.
Esser
,
M.
Lenartz
, and
H.
Groenig
, “
Gaseous detonation driver for a shock tunnel
,”
Shock Waves
2
(
4
),
245
254
(
1992
).
27.
Z. L.
Jiang
,
J. P.
Li
,
W.
Zhao
,
Y. F.
Liu
, and
H.
Yu
, “
Investigating into techniques for extending the test-duration of detonation-driven shock tunnels
,”
Chin. J. Theor. Appl. Mech.
44
(
5
),
824
831
(
2012
).
28.
J.
Li
,
H.
Chen
, and
H.
Yu
, “
A chemical shock tube driven by detonation
,”
Shock Waves
22
(
4
),
351
362
(
2012
).
29.
G. J.
Sharpe
, “
Transverse waves in numerical simulations of cellular detonations
,”
J. Fluid Mech.
447
(
1
),
31
51
(
2001
).
30.
W. C.
Reynolds
,
The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN, Version3
(
Mechanical Engineering Department
,
Stanford University
,
1986
).
31.
F.
De Filippis
,
R.
Savino
, and
A.
Martucci
, “
Numerical-experimental correlation of stagnation point heat flux in high enthalpy hypersonic wind tunnel
,” in
AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference
(
AIAA
,
2005
), pp.
715
726
.
You do not currently have access to this content.