This work evaluates the applicability of super-resolution generative adversarial networks (SRGANs) as a methodology for the reconstruction of turbulent-flow quantities from coarse wall measurements. The method is applied both for the resolution enhancement of wall fields and the estimation of wall-parallel velocity fields from coarse wall measurements of shear stress and pressure. The analysis has been carried out with a database of a turbulent open-channel flow with a friction Reynolds number Reτ=180 generated through direct numerical simulation. Coarse wall measurements have been generated with three different downsampling factors fd=[4,8,16] from the high-resolution fields, and wall-parallel velocity fields have been reconstructed at four inner-scaled wall-normal distances y+=[15,30,50,100]. We first show that SRGAN can be used to enhance the resolution of coarse wall measurements. If compared with the direct reconstruction from the sole coarse wall measurements, SRGAN provides better instantaneous reconstructions, in terms of both mean-squared error and spectral-fractional error. Even though lower resolutions in the input wall data make it more challenging to achieve highly accurate predictions, the proposed SRGAN-based network yields very good reconstruction results. Furthermore, it is shown that even for the most challenging cases, the SRGAN is capable of capturing the large-scale structures that populate the flow. The proposed novel methodology has a great potential for closed-loop control applications relying on non-intrusive sensing.

1.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
2.
R.
Zeleznik
,
B.
Foldyna
,
P.
Eslami
,
J.
Weiss
,
I.
Alexander
,
J.
Taron
,
C.
Parmar
,
R. M.
Alvi
,
D.
Banerji
,
M.
Uno
 et al, “
Deep convolutional neural networks to predict cardiovascular risk from computed tomography
,”
Nat. Commun.
12
,
1
9
(
2021
).
3.
J.
De Fauw
,
J. R.
Ledsam
,
B.
Romera-Paredes
,
S.
Nikolov
,
N.
Tomasev
,
S.
Blackwell
,
H.
Askham
,
X.
Glorot
,
B.
O'Donoghue
,
D.
Visentin
 et al, “
Clinically applicable deep learning for diagnosis and referral in retinal disease
,”
Nat. Med.
24
,
1342
1350
(
2018
).
4.
I. P.
Waldmann
and
C. A.
Griffith
, “
Mapping saturn using deep learning
,”
Nat. Astron.
3
,
620
625
(
2019
).
5.
M. S.
Norouzzadeh
,
A.
Nguyen
,
M.
Kosmala
,
A.
Swanson
,
M. S.
Palmer
,
C.
Packer
, and
J.
Clune
, “
Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning
,”
Proc. Natl. Acad. Sci.
115
,
E5716
E5725
(
2018
).
6.
S.-M.
Udrescu
and
M.
Tegmark
, “
AI Feynman: A physics-inspired method for symbolic regression
,”
Sci. Adv.
6
,
eaay2631
(
2020
).
7.
H.
Kwon
,
H.
Yoon
,
C.
Lee
,
G.
Chen
,
K.
Liu
,
A.
Schmid
,
Y.
Wu
,
J.
Choi
, and
C.
Won
, “
Magnetic Hamiltonian parameter estimation using deep learning techniques
,”
Sci. Adv.
6
,
eabb0872
(
2020
).
8.
R.
Vinuesa
,
H.
Azizpour
,
I.
Leite
,
M.
Balaam
,
V.
Dignum
,
S.
Domisch
,
A.
Felländer
,
S. D.
Langhans
,
M.
Tegmark
, and
F.
Fuso Nerini
, “
The role of artificial intelligence in achieving the sustainable development goals
,”
Nat. Commun.
11
,
233
(
2020
).
9.
J. N.
Kutz
, “
Deep learning in fluid dynamics
,”
J. Fluid Mech.
814
,
1
4
(
2017
).
10.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
11.
J.
Ling
,
A.
Kurzawski
, and
J.
Templeton
, “
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
,”
J. Fluid Mech.
807
,
155
166
(
2016
).
12.
J.
Jiménez
, “
Machine-aided turbulence theory
,”
J. Fluid Mech.
854
,
R1
(
2018
).
13.
P. A.
Srinivasan
,
L.
Guastoni
,
H.
Azizpour
,
P.
Schlatter
, and
R.
Vinuesa
, “
Predictions of turbulent shear flows using deep neural networks
,”
Phys. Rev. Fluids
4
,
054603
(
2019
).
14.
H.
Eivazi
,
L.
Guastoni
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
,”
Int. J. Heat Fluid Flow
90
,
108816
(
2021
).
15.
M.
Raissi
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
,
1026
1030
(
2020
).
16.
I. J.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
, “
Generative adversarial networks
,” arXiv:1406.2661 (
2014
).
17.
C.
Ledig
,
L.
Theis
,
F.
Huszár
,
J.
Caballero
,
A.
Cunningham
,
A.
Acosta
,
A.
Aitken
,
A.
Tejani
,
J.
Totz
,
Z.
Wang
, and
W.
Shi
, “
Photo-realistic single image super-resolution using a generative adversarial network
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2017
), pp.
4681
4690
.
18.
X.
Wang
,
K.
Yu
,
S.
Wu
,
J.
Gu
,
Y.
Liu
,
C.
Dong
,
Y.
Qiao
, and
C.
Change Loy
, “
ESRGAN: Enhanced super-resolution generative adversarial networks
,” in
Proceedings of the European Conference on Computer Vision (ECCV) Workshops
(
2018
).
19.
Z.
Deng
,
C.
He
,
Y.
Liu
, and
K. C.
Kim
, “
Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
,”
Phys. Fluids
31
,
125111
(
2019
).
20.
M.
Werhahn
,
Y.
Xie
,
M.
Chu
, and
N.
Thuerey
, “
A multi-pass gan for fluid flow super-resolution
,”
Proc. ACM Comput. Graph. Interact. Tech.
2
,
1
21
(
2019
).
21.
H.
Kim
,
J.
Kim
,
S.
Won
, and
C.
Lee
, “
Unsupervised deep learning for super-resolution reconstruction of turbulence
,”
J. Fluid Mech.
910
,
A29
(
2021
).
22.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Super-resolution reconstruction of turbulent flows with machine learning
,”
J. Fluid Mech.
870
,
106
120
(
2019
).
23.
B.
Liu
,
J.
Tang
,
H.
Huang
, and
X. Y.
Lu
, “
Deep learning methods for super-resolution reconstruction of turbulent flows
,”
Phys. Fluids
32
,
025105
(
2020
).
24.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
,”
J. Fluid Mech.
909
,
A9
(
2021
).
25.
L.
Guastoni
,
M. P.
Encinar
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Prediction of wall-bounded turbulence from wall quantities using convolutional neural networks
,”
J. Phys.: Conf. Ser.
1522
,
012022
(
2020
).
26.
L.
Guastoni
,
A.
Güemes
,
A.
Ianiro
,
S.
Discetti
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Convolutional-network models to predict wall-bounded turbulence from wall quantities
,” arXiv:2006.12483 (
2020
).
27.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
(
Nauka
,
1967
).
28.
A.
Güemes
,
S.
Discetti
, and
A.
Ianiro
, “
Sensing the turbulent large-scale motions with their wall signature
,”
Phys. Fluids
31
,
125112
(
2019
).
29.
N. B.
Erichson
,
L.
Mathelin
,
Z.
Yao
,
S. L.
Brunton
,
M. W.
Mahoney
, and
J. N.
Kutz
, “
Shallow neural networks for fluid flow reconstruction with limited sensors
,”
Proc. R. Soc. A
476
,
20200097
(
2020
).
30.
M.
Chevalier
,
P.
Schlatter
,
A.
Lundbladh
, and
D. S.
Henningson
, “
A pseudospectral solver for incompressible boundary layer flows
,”
Technical Report No. TRITA-MEK 2007:07
(
KTH Mechanics
,
Stockholm, Sweden
,
2007
).
31.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2016
), pp.
770
778
.
32.
W.
Shi
,
J.
Caballero
,
F.
Huszár
,
J.
Totz
,
A. P.
Aitken
,
R.
Bishop
,
D.
Rueckert
, and
Z.
Wang
, “
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2016
), pp.
1874
1883
.
33.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
3rd International Conference on Learning Representations
, ICLR 2015, San Diego, CA, USA, May 7–9 (
2015
).
34.
H.
Choi
,
P.
Moin
,
J.
Kim
 et al, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
(
1994
).
35.
C.
Lee
,
J.
Kim
,
D.
Babcock
, and
R.
Goodman
, “
Application of neural networks to turbulence control for drag reduction
,”
Phys. Fluids
9
,
1740
1747
(
1997
).
36.
H.
Bai
,
Y.
Zhou
,
W.
Zhang
,
S.
Xu
,
Y.
Wang
, and
R.
Antonia
, “
Active control of a turbulent boundary layer based on local surface perturbation
,”
J. Fluid Mech.
750
,
316
(
2014
).
37.
A.
Lozano-Durán
and
J.
Jiménez
, “
Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades
,”
J. Fluid Mech.
759
,
432
(
2014
).
38.
N.
Hutchins
and
I.
Marusic
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc. A
365
,
647
664
(
2007
).
39.
E.
Dogan
,
R.
Örlü
,
D.
Gatti
,
R.
Vinuesa
, and
P.
Schlatter
, “
Quantification of amplitude modulation in wall-bounded turbulence
,”
Fluid Dyn. Res.
51
,
011408
(
2019
).
40.
M. P.
Encinar
and
J.
Jiménez
, “
Logarithmic-layer turbulence: A view from the wall
,”
Phys. Rev. Fluids
4
,
114603
(
2019
).
41.
W. J.
Baars
,
N.
Hutchins
, and
I.
Marusic
, “
Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model
,”
Phys. Rev. Fluids
1
,
054406
(
2016
).
42.
Á.
Tanarro
,
R.
Vinuesa
, and
P.
Schlatter
, “
Effect of adverse pressure gradients on turbulent wing boundary layers
,”
J. Fluid Mech.
883
,
A8
(
2020
).
You do not currently have access to this content.