This article proposes a new outflow boundary condition for the color gradient model in the multiphase lattice Boltzmann method. The boundary condition is based on the phase ratio equation and made use of the Zou–He boundary condition in single-phase flow. The boundary condition is provided in two-dimension-nine-velocity (D2Q9) and three-dimension-twenty-seven-velocity (D3Q27) schemes, for which an extension of the Zou–He boundary condition to D3Q27 is also derived and its correctness verified. Application cases, including two-phase parallel flows, droplet flows, T-junction flows, three-phase Janus droplet flows in two-dimensional (2D), and three-dimensional (3D) spaces, demonstrate the effectiveness of this new boundary condition, and the performance of a test case shows its improved pressure stability and mass conservation characteristics.

1.
D.
Wang
,
D. S.
Tan
,
B. C.
Khoo
,
Z.
Ouyang
, and
N.
Phan-Thien
, “
A lattice Boltzmann modeling of viscoelastic drops' deformation and breakup in simple shear flows
,”
Phys. Fluids
32
,
123101
(
2020
).
2.
H.
Kang
,
S.
Lourenco
, and
W. M.
Yan
, “
Lattice Boltzmann simulation of droplet dynamics on granular surfaces with variable wettability
,”
Phys. Rev. E
98
,
012902
(
2018
).
3.
F.
Milan
,
L.
Biferale
,
M.
Sbragaglia
, and
F.
Toschi
, “
Lattice Boltzmann simulations of droplet breakup in confined and time-dependent flows
,”
Phys. Rev. Fluids
5
,
033607
(
2020
).
4.
K.
Luo
,
J.
Wu
,
H.-L.
Yi
, and
H.-P.
Tan
, “
Numerical analysis of two-phase electrohydrodynamic flows in the presence of surface charge convection
,”
Phys. Fluids
32
,
123606
(
2020
).
5.
X.
Wang
,
B.
Xu
, and
Z.
Chen
, “
Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice Boltzmann method
,”
Int. J. Numer. Methods Heat Fluid Flow
30
,
607
624
(
2019
).
6.
P.
Mora
,
G.
Morra
, and
D. A.
Yuen
, “
Optimal surface-tension isotropy in the Rothman-Keller color-gradient lattice Boltzmann method for multiphase flow
,”
Phys. Rev. E
103
,
033302
(
2021
).
7.
C.
Zhang
,
K.
Kaito
,
Y.
Hu
,
A.
Patmonoaji
,
S.
Matsushita
, and
T.
Suekane
, “
Influence of stagnant zones on solute transport in heterogeneous porous media at the pore scale
,”
Phys. Fluids
33
,
036605
(
2021
).
8.
D.
Panda
,
S.
Paliwal
,
D. P.
Sourya
,
A.
Kharaghani
,
E.
Tsotsas
, and
V. K.
Surasani
, “
Influence of thermal gradients on the invasion patterns during drying of porous media: A lattice Boltzmann method
,”
Phys. Fluids
32
,
122116
(
2020
).
9.
X.
Li
,
P.
Yu
,
X.-D.
Niu
,
D.-C.
Li
, and
H.
Yamaguchi
, “
A magnetic field coupling lattice Boltzmann model and its application on the merging process of multiple-ferrofluid-droplet system
,”
Appl. Math. Comput.
393
,
125769
(
2021
).
10.
S. M.
Sheikholeslam Noori
,
M. T.
Rahni
, and
S. A.
Shams Taleghani
, “
Numerical analysis of droplet motion over a flat plate due to surface acoustic waves
,”
Microgravity Sci. Technol.
32
,
647
660
(
2020
).
11.
Q.-Z.
Li
,
Z.-L.
Lu
,
D.
Zhou
,
X.-D.
Niu
,
T.-Q.
Guo
, and
B.-C.
Du
, “
Unified simplified multiphase lattice Boltzmann method for ferrofluid flows and its application
,”
Phys. Fluids
32
,
093302
(
2020
).
12.
N. M.
Naughton
,
C. G.
Tennyson
, and
J. G.
Georgiadis
, “
Lattice Boltzmann method for simulation of diffusion magnetic resonance imaging physics in multiphase tissue models
,”
Phys. Rev. E
102
,
043305
(
2020
).
13.
T. C.
de Goede
,
A. M.
Moqaddam
,
K. C. M.
Limpens
,
S. A.
Kooij
,
D.
Derome
,
J.
Carmeliet
,
N.
Shahidzadeh
, and
D.
Bonn
, “
Droplet impact of Newtonian fluids and blood on simple fabrics: Effect of fabric pore size and underlying substrate
,”
Phys. Fluids
33
,
033308
(
2021
).
14.
A.
Ghafouri
,
R.
Esmaily
, and
A. A.
Alizadeh
, “
Numerical simulation of tank-treading and tumbling motion of red blood cell in the Poiseuille flow in a microchannel with and without obstacle
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
43
,
627
638
(
2019
).
15.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
1819
(
1993
).
16.
S. S.
Baakeem
,
S. A.
Bawazeer
, and
A. A.
Mohamad
, “
Comparison and evaluation of Shan–Chen model and most commonly used equations of state in multiphase lattice Boltzmann method
,”
Int. J. Multiphase Flow
128
,
103290
(
2020
).
17.
M.
Latva-Kokko
and
D. H.
Rothman
, “
Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids
,”
Phys. Rev. E
71
,
056702
(
2005
).
18.
Z. X.
Wen
,
Q.
Li
,
Y.
Yu
, and
K. H.
Luo
, “
Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows
,”
Phys. Rev. E
100
,
023301
(
2019
).
19.
M. R.
Swift
,
E.
Orlandini
,
W. R.
Osborn
, and
J. M.
Yeomans
, “
Lattice Boltzmann simulations of liquid-gas and binary fluid systems
,”
Phys. Rev. E
54
,
5041
5052
(
1996
).
20.
Q.
Li
,
Y.
Yu
, and
R. Z.
Huang
, “
Achieving thermodynamic consistency in a class of free-energy multiphase lattice Boltzmann models
,”
Phys. Rev. E
103
,
013304
(
2021
).
21.
Q.
Zou
and
X.
He
, “
On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
,”
Phys. Fluids
9
,
1591
1598
(
1997
).
22.
Q.
Lou
,
Z.
Guo
, and
B.
Shi
, “
Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation
,”
Phys. Rev. E
87
,
063301
(
2013
).
23.
Y.
Hou
,
H.
Deng
,
Q.
Du
, and
K.
Jiao
, “
Multi-component multi-phase lattice Boltzmann modeling of droplet coalescence in flow channel of fuel cell
,”
J. Power Sources
393
,
83
91
(
2018
).
24.
J.
Huang
,
F.
Xiao
, and
X.
Yin
, “
Lattice Boltzmann simulation of pressure-driven two-phase flows in capillary tube and porous medium
,”
Comput. Fluids
155
,
134
(
2017
).
25.
T.
Reis
and
T. N.
Phillips
, “
Lattice Boltzmann model for simulating immiscible two-phase flows
,”
J. Phys. A
40
,
4033
4053
(
2007
).
26.
U.
D'Ortona
,
D.
Salin
,
M.
Cieplak
,
R. B.
Rybka
, and
J. R.
Banavar
, “
Two-color nonlinear Boltzmann cellular automata: Surface tension and wetting
,”
Phys. Rev. E
51
,
3718
3728
(
1995
).
27.
S.
Leclaire
,
M.
Reggio
, and
J.-Y.
Trépanier
, “
Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios
,”
J. Comput. Phys.
246
,
318
342
(
2013
).
28.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
29.
M.
Hecht
and
J.
Harting
, “
Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations
,”
J. Stat. Mech.
2010
,
P01018
.
30.
L.
Wu
and
Y.
Chen
, “
Visualization study of emulsion droplet formation in a coflowing microchannel
,”
Chem. Eng. Process.
85
,
77
85
(
2014
).
31.
S.
Zhao
,
W.
Wang
,
M.
Zhang
,
T.
Shao
,
Y.
Jin
, and
Y.
Cheng
, “
Three-dimensional simulation of mixing performance inside droplets in micro-channels by lattice Boltzmann method
,”
Chem. Eng. J.
207–208
,
267
277
(
2012
).
32.
W.
Wang
,
Z.
Liu
,
Y.
Jin
, and
Y.
Cheng
, “
LBM simulation of droplet formation in micro-channels
,”
Chem. Eng. J.
173
,
828
836
(
2011
).
33.
H.
Wang
,
Y.
Fu
,
Y.
Wang
,
L.
Yan
, and
Y.
Cheng
, “
Three-dimensional lattice Boltzmann simulation of Janus droplet formation in y-shaped co-flowing microchannel
,”
Chem. Eng. Sci.
225
,
115819
(
2020
).
34.
Y.
Fu
,
L.
Bai
,
K.
Bi
,
S.
Zhao
,
Y.
Jin
, and
Y.
Cheng
, “
Numerical study of Janus droplet formation in microchannels by a lattice Boltzmann method
,”
Chem. Eng. Process.
119
,
34
43
(
2017
).
35.
B.
Hoseinpour
and
A.
Sarreshtehdari
, “
Lattice Boltzmann simulation of droplets manipulation generated in lab-on-chip (LOC) microfluidic T-junction
,”
J. Mol. Liq.
297
,
111736
(
2020
).
36.
V. G.
Agarwal
,
R.
Singh
,
S. S.
Bahga
, and
A.
Gupta
, “
Dynamics of droplet formation and flow regime transition in a t-shaped microfluidic device with a shear-thinning continuous phase
,”
Phys. Rev. Fluids
5
,
044203
(
2020
).
37.
H.
Liu
,
A. J.
Valocchi
, and
Q.
Kang
, “
Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations
,”
Phys. Rev. E
85
,
046309
(
2012
).

Supplementary Material

You do not currently have access to this content.