We report the interaction between active non-spherical swimmers and a long-standing flow structure, Lagrangian coherent structures (LCSs), in a weakly turbulent two-dimensional flow. Using a hybrid experimental–numerical model, we show that rod-like swimmers have a much stronger and more robust preferential alignment with attracting LCSs than with repelling LCSs. Tracing the swimmers' Lagrangian trajectories, we reveal that the preferential alignment is the consequence of the competition between the intrinsic mobility of the swimmers and the reorientation ability of the strain rate near the attracting LCSs. The strong preferential alignment with attracting LCSs further leads to a strong accumulation near the attracting LCSs. Moreover, we show the self-similarity of this accumulation, which reduces the intricate interaction to only one control parameter. Our results generically elucidate the interaction between active and non-spherical swimmers with LCSs and, thus, can be widely applied to many natural and engineered fluids.

1.
S.
Amin
,
L.
Hmelo
,
H.
Van Tol
,
B.
Durham
,
L.
Carlson
,
K.
Heal
,
R.
Morales
,
C.
Berthiaume
,
M.
Parker
,
B.
Djunaedi
 et al, “
Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria
,”
Nature
522
,
98
101
(
2015
).
2.
R.
Stocker
, “
Marine microbes see a sea of gradients
,”
Science
338
,
628
633
(
2012
).
3.
H. J.
Kim
,
D.
Huh
,
G.
Hamilton
, and
D. E.
Ingber
, “
Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
,”
Lab Chip
12
,
2165
2174
(
2012
).
4.
O. A.
Croze
,
G.
Sardina
,
M.
Ahmed
,
M. A.
Bees
, and
L.
Brandt
, “
Dispersion of swimming algae in laminar and turbulent channel flows: Consequences for photobioreactors
,”
J. R. Soc., Interface
10
,
20121041
(
2013
).
5.
W.
Clavano
,
E.
Boss
, and
L.
Karp-Boss
, “
Inherent optical properties of non-spherical marine-like particles Äî from theory to observation
,”
Oceanogr. Mar. Biol.
45
,
1
38
(
2007
).
6.
M. E.
Huntley
and
M.
Zhou
, “
Influence of animals on turbulence in the sea
,”
Mar. Ecol.: Prog. Ser.
273
,
65
79
(
2004
).
7.
J. S.
Guasto
,
R.
Rusconi
, and
R.
Stocker
, “
Fluid mechanics of planktonic microorganisms
,”
Annu. Rev. Fluid Mech.
44
,
373
400
(
2012
).
8.
J. R.
Taylor
and
R.
Stocker
, “
Trade-offs of chemotactic foraging in turbulent water
,”
Science
338
,
675
679
(
2012
).
9.
J. D.
Brookes
,
J.
Antenucci
,
M.
Hipsey
,
M. D.
Burch
,
N. J.
Ashbolt
, and
C.
Ferguson
, “
Fate and transport of pathogens in lakes and reservoirs
,”
Environ. Int.
30
,
741
759
(
2004
).
10.
E. T.
Kai
,
V.
Rossi
,
J.
Sudre
,
H.
Weimerskirch
,
C.
Lopez
,
E.
Hernandez-Garcia
,
F.
Marsac
, and
V.
Garçon
, “
Top marine predators track Lagrangian coherent structures
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
8245
8250
(
2009
).
11.
K. L.
Scales
,
E. L.
Hazen
,
M. G.
Jacox
,
F.
Castruccio
,
S. M.
Maxwell
,
R. L.
Lewison
, and
S. J.
Bograd
, “
Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
7362
7367
(
2018
).
12.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
, “
Microscopic artificial swimmers
,”
Nature
437
,
862
865
(
2005
).
13.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
14.
T.
Pedley
and
J. O.
Kessler
, “
Hydrodynamic phenomena in suspensions of swimming microorganisms
,”
Annu. Rev. Fluid Mech.
24
,
313
358
(
1992
).
15.
E.
Lauga
, “
Bacterial hydrodynamics
,”
Annu. Rev. Fluid Mech.
48
,
105
130
(
2016
).
16.
S. L.
Percival
and
D. W.
Williams
, “
Chapter six - Escherichia coli
,” in
Microbiology of Waterborne Diseases
, 2nd ed., edited by
S. L.
Percival
,
M. V.
Yates
,
D. W.
Williams
,
R. M.
Chalmers
, and
N. F.
Gray
(
Academic Press
,
London
,
2014
), pp.
89
117
.
17.
A. M.
Roberts
, “
The biased random walk and the analysis of micro-organism movement
,”
Swimming Flying Nat.
1
,
377
393
(
1975
).
18.
M. G.
Mortuza
,
T.
Takahashi
,
T.
Ueki
,
T.
Kosaka
,
H.
Michibata
, and
H.
Hosoya
, “
Toxicity and bioaccumulation of hexavalent chromium in green paramecium, Paramecium bursaria
,”
J. Health Sci.
51
(
6
),
676
682
(
2005
).
19.
Y.
Nakaoka
,
T.
Oka
,
K.
Serizawa
,
H.
Toyotama
, and
F.
Oosawa
, “
Acceleration of paramecium swimming velocity is effected by various cations
,”
Cell Struct. Funct.
8
,
77
84
(
1983
).
20.
E.
Brinton
, “
The distribution of Pacific euphausiids
,”
Bull. Scripps Inst. Oceanogr.
8
(
2
),
51
270
(
1962
).
21.
J.
Torres
and
J.
Childress
, “
Relationship of oxygen consumption to swimming speed in Euphausia pacifica
,”
Mar. Biol.
74
,
79
86
(
1983
).
22.
J. M.
Billerbeck
,
T. E.
Lankford
, and
D. O.
Conover
, “
Evolution of intrinsic growth and energy acquisition rates. i. Trade-offs with swimming performance in Menidia menidia
,”
Evolution
55
,
1863
1872
(
2001
).
23.
N.
Khurana
and
N. T.
Ouellette
, “
Interactions between active particles and dynamical structures in chaotic flow
,”
Phys. Fluids
24
,
091902
(
2012
).
24.
N.
Khurana
,
J.
Blawzdziewicz
, and
N. T.
Ouellette
, “
Reduced transport of swimming particles in chaotic flow due to hydrodynamic trapping
,”
Phys. Rev. Lett.
106
,
198104
(
2011
).
25.
M.
Borgnino
,
K.
Gustavsson
,
F.
De Lillo
,
G.
Boffetta
,
M.
Cencini
, and
B.
Mehlig
, “
Alignment of nonspherical active particles in chaotic flows
,”
Phys. Rev. Lett.
123
,
138003
(
2019
).
26.
C.
Torney
and
Z.
Neufeld
, “
Transport and aggregation of self-propelled particles in fluid flows
,”
Phys. Rev. Lett.
99
,
078101
(
2007
).
27.
R.
Rusconi
,
J. S.
Guasto
, and
R.
Stocker
, “
Bacterial transport suppressed by fluid shear
,”
Nat. Phys.
10
,
212
217
(
2014
).
28.
W. M.
Durham
,
E.
Climent
,
M.
Barry
,
F.
De Lillo
,
G.
Boffetta
,
M.
Cencini
, and
R.
Stocker
, “
Turbulence drives microscale patches of motile phytoplankton
,”
Nat. Commun.
4
,
1
7
(
2013
).
29.
K. D.
Squires
and
J. K.
Eaton
, “
Preferential concentration of particles by turbulence
,”
Phys. Fluids A
3
,
1169
1178
(
1991
).
30.
N.
Pujara
,
M.
Koehl
, and
E.
Variano
, “
Rotations and accumulation of ellipsoidal microswimmers in isotropic turbulence
,”
J. Fluid Mech.
838
,
356
(
2018
).
31.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Analyzing preferential concentration and clustering of inertial particles in turbulence
,”
Int. J. Multiphase Flow
40
,
1
18
(
2012
).
32.
M.
Obligado
,
T.
Teitelbaum
,
A.
Cartellier
,
P.
Mininni
, and
M.
Bourgoin
, “
Preferential concentration of heavy particles in turbulence
,”
J. Turbul.
15
,
293
310
(
2014
).
33.
F.
Falkinhoff
,
M.
Obligado
,
M.
Bourgoin
, and
P. D.
Mininni
, “
Preferential concentration of free-falling heavy particles in turbulence
,”
Phys. Rev. Lett.
125
,
064504
(
2020
).
34.
B.
Ray
and
L. R.
Collins
, “
Preferential concentration and relative velocity statistics of inertial particles in Navier–Stokes turbulence with and without filtering
,”
J. Fluid Mech.
680
,
488
(
2011
).
35.
C.
Zhan
,
G.
Sardina
,
E.
Lushi
, and
L.
Brandt
, “
Accumulation of motile elongated micro-organisms in turbulence
,”
J. Fluid Mech.
739
,
22
36
(
2014
).
36.
W. M.
Durham
,
J. O.
Kessler
, and
R.
Stocker
, “
Disruption of vertical motility by shear triggers formation of thin phytoplankton layers
,”
Science
323
,
1067
1070
(
2009
).
37.
S.
Lovecchio
,
E.
Climent
,
R.
Stocker
, and
W. M.
Durham
, “
Chain formation can enhance the vertical migration of phytoplankton through turbulence
,”
Sci. Adv.
5
,
eaaw7879
(
2019
).
38.
D. H.
Kelley
and
N. T.
Ouellette
, “
Onset of three-dimensionality in electromagnetically driven thin-layer flows
,”
Phys. Fluids
23
,
045103
(
2011
).
39.
Y.
Liao
and
N. T.
Ouellette
, “
Spatial structure of spectral transport in two-dimensional flow
,”
J. Fluid Mech.
725
,
281
298
(
2013
).
40.
L.
Fang
,
S.
Balasuriya
, and
N. T.
Ouellette
, “
Local linearity, coherent structures, and scale-to-scale coupling in turbulent flow
,”
Phys. Rev. Fluids
4
,
014501
(
2019
).
41.
L.
Fang
and
N. T.
Ouellette
, “
Multiple stages of decay in two-dimensional turbulence
,”
Phys. Fluids
29
,
111105
(
2017
).
42.
G.
Boffetta
and
R. E.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
451
(
2012
).
43.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
179
(
1922
).
44.
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Phys. D
147
,
352
370
(
2000
).
45.
G.
Haller
, “
Lagrangian coherent structures
,”
Annu. Rev. Fluid Mech.
47
,
137
162
(
2015
).
46.
N. T.
Ouellette
,
C. A.
Hogg
, and
Y.
Liao
, “
Correlating Lagrangian structures with forcing in two-dimensional flow
,”
Phys. Fluids
28
,
015105
(
2016
).
47.
G. A.
Voth
,
G.
Haller
, and
J. P.
Gollub
, “
Experimental measurements of stretching fields in fluid mixing
,”
Phys. Rev. Lett.
88
,
254501
(
2002
).
48.
G.
Haller
, “
Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence
,”
Phys. Fluids
13
,
3365
3385
(
2001
).
49.
Z.
Wilson
,
M.
Tutkun
, and
R.
Cal
, “
Identification of Lagrangian coherent structures in a turbulent boundary layer
,” in
Proceedings of 6th AIAA Theoretical Fluid Mechanics Conference
(
AIAA
,
2013
), p.
4021
.
50.
M. A.
Green
,
C. W.
Rowley
, and
G.
Haller
, “
Detection of Lagrangian coherent structures in three-dimensional turbulence
,”
J. Fluid Mech.
572
,
111
120
(
2007
).
51.
S.
Rafati
and
N. T.
Clemens
, “
Frameworks for investigation of nonlinear dynamics: Experimental study of the turbulent jet
,”
Phys. Fluids
32
,
085112
(
2020
).
52.
K. R.
Pratt
,
J. D.
Meiss
, and
J. P.
Crimaldi
, “
Reaction enhancement of initially distant scalars by Lagrangian coherent structures
,”
Phys. Fluids
27
,
035106
(
2015
).
53.
G.
Haller
, “
Lagrangian coherent structures from approximate velocity data
,”
Phys. Fluids
14
,
1851
1861
(
2002
).
54.
C.
Truesdell
and
W.
Noll
, “
The non-linear field theories of mechanics
,” in
The Non-Linear Field Theories of Mechanics
(
Springer
,
2004
), pp.
1
579
.
55.
L.
Fang
,
S.
Balasuriya
, and
N. T.
Ouellette
, “
Disentangling resolution, precision, and inherent stochasticity in nonlinear systems
,”
Phys. Rev. Res.
2
,
023343
(
2020
).
56.
A.
Hadjighasem
,
M.
Farazmand
,
D.
Blazevski
,
G.
Froyland
, and
G.
Haller
, “
A critical comparison of Lagrangian methods for coherent structure detection
,”
Chaos
27
,
053104
(
2017
).
57.
S.
Balasuriya
,
R.
Kalampattel
, and
N. T.
Ouellette
, “
Hyperbolic neighbourhoods as organizers of finite-time exponential stretching
,”
J. Fluid Mech.
807
,
509
545
(
2016
).
58.
R.
Ni
,
N. T.
Ouellette
, and
G. A.
Voth
, “
Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence
,”
J. Fluid Mech.
743
,
R3
(
2014
).
59.
R.
Jayaram
,
Y.
Jie
,
J.
Gillissen
,
L.
Zhao
, and
H.
Andersson
, “
Alignment and rotation of spheroids in unsteady vortex flow
,”
Phys. Fluids
33
,
033310
(
2021
).
60.
S. B.
Pope
,
Turbulent Flows
(
IOP Publishing
,
2001
).
You do not currently have access to this content.