Bulk viscosity describes the irreversible resistance to the rate of volume change. Bulk viscosity, which is more than ten thousand times higher than shear viscosity, has been ignored in the field of polymer processing for the past decades. Bulk viscosity may play an important role for compressible polymer melts undergoing strong compression during processing, especially during the packing and holding stage in injection molding. In this study, bulk viscosity of an amorphous Polystyrene melt is investigated through measurements, modeling, and implementation in an injection molding simulation. The results demonstrated that bulk viscosity can be derived from a cooling rate-controlled PVT (pressure-specific volume–temperature) measurement. A new pressure-specific volume–temperature–cooling rate model was developed to obtain smooth and reliable bulk viscosity results. Furthermore, a Cross-William–Landel–Ferry–Arrhenius model was found capable of describing the dependence of temperature, rate of volume change, and mechanical pressure on bulk viscosity of this polymer melt. The proposed modeling was first verified using the non-equilibrium PVT and then was implemented into an injection molding simulation. Simulation results showed that the effects of bulk viscosity not only prevent the material from changing its size but also reduce mechanical pressure variations during the injection molding packing stage.

1.
W. G.
Hoover
,
A. J. C.
Ladd
,
R. B.
Hickman
, and
B. L.
Holian
, “
Bulk viscosity via nonequilibrium and equilibrium molecular dynamics
,”
Phys. Rev. A
21
,
1756
(
1980
).
2.
R. E.
Graves
and
B. M.
Argrow
, “
Bulk viscosity: Past to present
,”
J. Thermophys. Heat Transfer
13
,
337
(
1999
).
3.
S.
Chen
,
X.
Wang
,
J.
Wang
,
M.
Wan
,
H.
Li
, and
S.
Chen
, “
Effects of bulk viscosity on compressible homogeneous turbulence
,”
Phys. Fluids
31
,
085115
(
2019
).
4.
F.
Jaeger
,
O. K.
Matar
, and
E. A.
Müller
, “
Bulk viscosity of molecular fluids
,”
Int. J. Chem. Phys.
148
,
174504
(
2018
).
5.
S.
Bhola
and
T. K.
Sengupta
, “
Roles of bulk viscosity on transonic shock-wave/boundary layer interaction
,”
Phys. Fluids
31
,
096101
(
2019
).
6.
Y. G.
Ohr
, “
Study on the non-equilibrium temperature behavior of normal shock waves and the bulk viscosity
,”
Phys. Fluids
32
,
061707
(
2020
).
7.
T.
Chen
,
X.
Wen
,
L. P.
Wang
,
Z.
Guo
,
J.
Wang
, and
S.
Chen
, “
Simulation of three-dimensional compressible decaying isotropic turbulence using a redesigned discrete unified gas kinetic scheme
,”
Phys. Fluids
32
,
125104
(
2020
).
8.
J. P.
Lesbats
,
R.
Legros
, and
J. V.
Aleman
, “
Longitudinal volume viscosity of epoxide prepolymers
,”
J. Polym. Sci.
20
,
1971
(
1982
).
9.
J. V.
Aleman
, “
Elongational, shear and volume viscosities of polymer melts
,”
Rheol. Acta
27
,
61
(
1988
).
10.
J. V.
Aleman
, “
Bulk and surface compression viscosities of high and low density polyethylenes
,”
Polym. Eng. Sci.
30
,
326
(
1990
).
11.
P.
Chivapornthip
and
E. L. J.
Bohez
, “
Dependence of bulk viscosity of polypropylene on strain, strain rate, and melt temperature
,”
Polym. Eng. Sci.
57
,
830
(
2017
).
12.
B.
Kowalska
, “
Thermodynamic equations of state of polymers and conversion processing
,”
Int. Polym. Sci. Technol.
29
,
76
(
2002
).
13.
M. L.
Wang
,
R. Y.
Chang
, and
C. H.
Hsu
,
Molding Simulation: Theory and Practice
(
Hanser
,
2018
).
14.
R. B.
Bird
,
W. E.
Stewart
, and, and
E. N.
Lightfoot
,
Transport Phenomena
(
John Wiley & Sons
,
2006
).
15.
J. H.
Dymond
and
R.
Malhotra
, “
The Tait equation: 100 years on
,”
Int. J. Thermophys.
9
,
941
(
1988
).
16.
R. Y.
Chang
,
C. H.
Chen
, and
K. S.
Su
, “
Modifying the Tait equation with cooling-rate effects to predict the pressure-volume-temperature behaviors of amorphous polymers: Modeling and experiments
,”
Polym. Eng. Sci.
36
,
1789
(
1996
).
17.
K.
Krebelj
,
M.
Halilovič
, and
N.
Mole
, “
The cooling rate dependence of the specific volume in amorphous plastic injection molding
,”
Int. J. Adv. Manuf. Technol.
103
,
1175
(
2019
).
18.
J.
Wang
,
C.
Hopmann
,
M.
Schmitz
,
T.
Hohlweck
, and
J.
Wipperfurth
, “
Modeling of PVT behavior of semi-crystalline polymer based on the two-domain Tait equation of state for injection molding
,”
Mater. Des.
183
,
108149
(
2019
).
19.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
, “
Dynamics of polymeric liquids
,” in
Fluid Mechanics
(
John Wiley & Sons
,
1987
), Vol.
1
.
20.
T.
Osswald
and
N.
Rudolph
,
Polymer Rheology
(
Hanser
,
2015
).
21.
C. A.
Hieber
and
H. H.
Chiang
, “
Shear‐rate‐dependence modeling of polymer melt viscosity
,”
Polym. Eng. Sci.
32
,
931
(
1992
).
22.
D. O.
Kazmer
, “
System identification and modeling of viscoelastic behavior from capillary melt rheological data
,”
Polym. Eng. Sci.
54
,
2824
(
2014
).
23.
S.
Raha
,
H.
Sharma
,
M.
Senthilmurugan
,
S.
Bandyopadhyay
, and
P.
Mukhopadhyay
, “
Determination of the pressure dependence of polymer melt viscosity using a combination of oscillatory and capillary rheometer
,”
Polym. Eng. Sci.
60
,
517
(
2020
).
24.
B.
Fan
and
D. O.
Kazmer
, “
Low‐temperature modeling of the time‐temperature shift factor for polycarbonate
,”
Adv. Polym. Tech.
24
,
278
(
2005
).
25.
J.
Capodagli
and
R.
Lakes
, “
Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time–temperature superposition
,”
Rheol. Acta
47
,
777
(
2008
).
26.
M.
Aschenbrenner
,
U.
Kulozik
, and
P.
Foerst
, “
Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model
,”
Cryobiology
65
,
308
(
2012
).
27.
R.
Zheng
,
R. I.
Tanner
, and
X. J.
Fan
,
Injection Molding: Integration of Theory and Modeling Methods
(
Springer Science & Business Media
,
2011
).
28.
R. Y.
Chang
and
W. H.
Yang
, “
Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach
,”
Int. J. Numer. Meth. Fluids
37
,
125
(
2001
).
You do not currently have access to this content.