The thermocapillary effect, arising flow due to a temperature gradient along a fluid interface, is the dominant effect in some industrial and microfluidic processes and must be studied in order to optimize them. In this work, we analyze how insoluble surfactants adsorbed at the interface can affect such a flow. In particular, we analyze the case where the thermocapillary flow is induced at the air–water interface by locally heating it with an infrared laser, setup that is used to manipulate floating particles through the generated flow. Since water is a polar fluid, the air–water interface is easily polluted by surfactants. We developed a numerical model considering the uncontrolled presence of surfactants, which evidences that the effect of the surface contamination cannot be neglected, even for small surfactants concentration. The results of this numerical model were compared with different experimental measurements: particle tracking velocimetry, convection cell radius measurements, and thermography of the surface. All the experimental observations agree with the numerical model with the initial surface contamination being a fitting parameter. The model was then validated comparing its results with measurements for which a known quantity of surfactant was added to the interface. Finally, an analytical model was developed to explain the effects of the governing parameters, which agrees with the simulations and the experimental results. The developed models give us insight toward the miniaturization of the manipulation platform.

1.
L. E.
Scriven
and
C. V.
Sternling
, “
The Marangoni effects
,”
Nature
187
,
186
188
(
1960
).
2.
K.
Mills
,
B.
Keene
,
R.
Brooks
, and
A.
Shirali
, “
Marangoni effects in welding
,”
Philos. Trans. R. Soc. London, Ser. A
356
,
911
925
(
1998
).
3.
F.
Preisser
,
D.
Schwabe
,
A.
Scharmann
 et al, “
Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface
,”
J. Fluid Mech.
126
,
545
567
(
1983
).
4.
G. J.
Amador
,
A. F.
Tabak
,
Z.
Ren
,
Y.
Alapan
,
O.
Yasa
, and
M.
Sitti
, “
Thermocapillary-driven fluid flow within microchannels
,” arXiv:1802.00475 (
2018
).
5.
Y.
Zhao
,
D.
Wan
,
X.
Chen
,
X.
Chao
, and
H.
Xu
, “
Uniform breaking of liquid-jets by modulated laser heating
,”
Phys. Fluids
33
,
044115
(
2021
).
6.
Y. S.
Ryazantsev
,
M. G.
Velarde
,
R. G.
Rubio
,
E.
Guzmán
,
F.
Ortega
, and
P.
López
, “
Thermo-and soluto-capillarity: Passive and active drops
,”
Adv. Colloid Interface Sci.
247
,
52
80
(
2017
).
7.
K.-X.
Hu
,
C.-Y.
Yan
, and
Q.-S.
Chen
, “
Instability of thermocapillary-buoyancy convection in droplet migration
,”
Phys. Fluids
31
,
122101
(
2019
).
8.
M. A.
Rahman
,
J.
Cheng
,
Z.
Wang
, and
A. T.
Ohta
, “
Cooperative micromanipulation using the independent actuation of fifty microrobots in parallel
,”
Sci. Rep.
7
,
3278
(
2017
).
9.
M.
Lu
,
J.
Lu
,
Y.
Zhang
, and
G.
Tryggvason
, “
Numerical study of thermocapillary migration of a bubble in a channel with an obstruction
,”
Phys. Fluids
31
,
062101
(
2019
).
10.
K.
Dietrich
,
N.
Jaensson
,
I.
Buttinoni
,
G.
Volpe
, and
L.
Isa
, “
Microscale Marangoni surfers
,”
Phys. Rev. Lett.
125
,
098001
(
2020
).
11.
E.
Lucassen-Reynders
,
A.
Cagna
, and
J.
Lucassen
, “
Gibbs elasticity, surface dilational modulus and diffusional relaxation in nonionic surfactant monolayers
,”
Colloids Surf. A
186
,
63
72
(
2001
).
12.
L.
Champougny
,
B.
Scheid
,
F.
Restagno
,
J.
Vermant
, and
E.
Rio
, “
Surfactant-induced rigidity of interfaces: A unified approach to free and dip-coated films
,”
Soft Matter
11
,
2758
2770
(
2015
).
13.
A.
Mizev
,
A.
Shmyrov
, and
A.
Shmyrova
, “
On the shear-driven surfactant layer instability
,” arXiv:2101.02485 (
2021
).
14.
G.
Koleski
,
A.
Vilquin
,
J.-C.
Loudet
,
T.
Bickel
, and
B.
Pouligny
, “
Azimuthal instability of the radial thermocapillary flow around a hot bead trapped at the water–air interface
,”
Phys. Fluids
32
,
092108
(
2020
).
15.
A.
Shmyrov
,
A.
Mizev
,
V.
Demin
,
M.
Petukhov
, and
D.
Bratsun
, “
On the extent of surface stagnation produced jointly by insoluble surfactant and thermocapillary flow
,”
Adv. Colloid Interface Sci.
255
,
10
17
(
2018
).
16.
R.
Terrazas Mallea
,
A.
Bolopion
,
J.
Beugnot
,
P.
Lambert
, and
M.
Gauthier
, “
Laser-induced thermocapillary convective flows: A new approach for noncontact actuation at microscale at the fluid/gas interface
,”
IEEE/ASME Trans. Mechatronics
22
,
693
704
(
2017
).
17.
F. N.
Piñan Basualdo
,
A.
Bolopion
,
M.
Gauthier
, and
P.
Lambert
, “
A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface
,”
Sci. Rob.
6
,
eabd3557
(
2021
).
18.
T. B.
Nguyen
and
C. M.
Phan
, “
Influence of hydrophilicity on the thermal-driven surfactant flow at the air/water surface
,”
ACS Omega
3
,
9060
9065
(
2018
).
19.
J.
Eastoe
and
J.
Dalton
, “
Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface
,”
Adv. Colloid Interface Sci.
85
,
103
144
(
2000
).
20.
H. A.
Stone
, “
A simple derivation of the time-dependent convective–diffusion equation for surfactant transport along a deforming interface
,”
Phys. Fluids A
2
,
111
112
(
1990
).
21.
A. K.
Sen
and
S. H.
Davis
, “
Steady thermocapillary flows in two-dimensional slots
,”
J. Fluid Mech.
121
,
163
186
(
1982
).
22.
B.
Messmer
,
T.
Lemee
,
K.
Ikebukuro
,
I.
Ueno
, and
R.
Narayanan
, “
Confined thermo-capillary flows in a double free-surface film with small Marangoni numbers
,”
Int. J. Heat Mass Transfer
78
,
1060
1067
(
2014
).
23.
H.
Chraïbi
and
J.-P.
Delville
, “
Thermocapillary flows and interface deformations produced by localized laser heating in confined environment
,”
Phys. Fluids
24
,
032102
(
2012
).
24.
P.
Kosky
,
R.
Balmer
,
W.
Keat
, and, and
G.
Wise
, “
Mechanical engineering
,” in
Exploring Engineering
, 5th ed., edited by
P.
Kosky
,
R.
Balmer
,
W.
Keat
, and
G.
Wise
(
Academic Press
,
2021
), Chap. 14, pp.
317
340
.
25.
T.
Dracos
, “
Particle tracking velocimetry (PTV)
,” in
Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques
(
Springer
,
1996
), pp.
155
160
.
26.
S.
Ferrari
and
L.
Rossi
, “
Particle tracking velocimetry and accelerometry (PTVA) measurements applied to quasi-two-dimensional multi-scale flows
,”
Exp. Fluids
44
,
873
886
(
2008
).
27.
A.
Prasad
, “
Particle image velocimetry
,”
Curr. Sci.
79
,
51
60
(
2000
), https://www.jstor.org/stable/24103321.
28.
S.
Dehaeck
,
P.
Queekers
, and
P.
Colinet
, “
Analyse par ptv du champ de vitesse de surface dans l'instabilité de Marangoni-Bénard
,” in
Congrès Francophone de Techniques Laser
(
2010
).
29.
D.
Vella
, “
Floating versus sinking
,”
Annu. Rev. Fluid Mech.
47
,
115
135
(
2015
).
30.
R. G.
Rubio
,
Y. S.
Ryazantsev
,
V. M.
Starov
,
G.-X.
Huang
,
A. P.
Chetverikov
,
P.
Arena
,
A. A.
Nepomnyashchy
,
A.
Ferrus
, and
E. G.
Morozov
, “
Thermography applied to interfacial phenomena, potentials and pitfalls
,” in
Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics
(
Springer
,
2013
), pp.
157
182
.
31.
F.
Girard
,
M.
Antoni
, and
K.
Sefiane
, “
Infrared thermography investigation of an evaporating sessile water droplet on heated substrates
,”
Langmuir
26
,
4576
4580
(
2010
).
32.
J.
Earnshaw
, “
Surface viscosity of water
,”
Nature
292
,
138
139
(
1981
).
33.
A.
Choudhury
,
V. K.
Paidi
,
S. K.
Kalpathy
, and
H. N.
Dixit
, “
Enhanced stability of free viscous films due to surface viscosity
,”
Phys. Fluids
32
,
082108
(
2020
).
34.
T.
Bickel
, “
Effect of surface-active contaminants on radial thermocapillary flows
,”
Eur. Phys. J. E
42
,
1
9
(
2019
).
35.
M.
Roché
,
Z.
Li
,
I. M.
Griffiths
,
S. L.
Roux
,
I.
Cantat
,
A.
Saint-Jalmes
, and
H. A.
Stone
, “
Marangoni flow of soluble amphiphiles
,”
Phys. Rev. Lett.
112
,
208302
(
2014
).
36.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
Springer
,
2016
).

Supplementary Material

You do not currently have access to this content.