Microfluidic systems are an interesting topic for investigation due to their wide-spreading applications. Nowadays, polymeric solutions are used mainly for the generation of microparticles in biomedical engineering, food, and pharmaceutical industries. Droplet-based microfluidic devices have proposed an extensive interest in many applications such as chemical/biological/nanomaterial preparation to understand deeply the droplet size and formation in microchannels. However, numerous experimental and numerical studies have been done for oil–water combination, polymeric solutions behavior in the presence of oil has not been investigated widely. Therefore, it is important to understand the droplet formation mechanisms in a microfluidic device for both water and polymeric solutions to determine the flow regime mapping in order to control the characteristic of the produced droplets. Also, in many studies, the length of the droplets as a parameter to investigate the droplet size was studied. In this study, droplet generation in the T-shaped microfluidic junction with an enlarged horizontal outlet channel was studied to have opportunity to determine the diameter of spherical droplets. The water and the alginate 1% (w/v) solutions were used separately as a dispersed phase, and the mineral oil was used as the continuous phase in which the solution's flow rates were varied over a wide range. To perform numerical simulations of the droplet formation, a two-phase level set method was used which is a suitable method for the investigation and simulation of immiscible fluids. The flow regime mapping for the two different aqueous solutions was obtained. Furthermore, the influences of flow rates on droplet size, droplet generation frequency was quantified. In this study, flow regime, droplet size, and droplet frequency were studied. In general, flow rates of the oil and aqueous fluids readily control five main flow regimes including backflow, laminar flow, dripping flow, squeezing flow, jetting flow, and fluctuated flow. It was observed that generated droplets with alginate solution as dispersed phase were more in the region of the jetting flow regime while water droplets were more in the region of the dripping flow regime, this can be due to the difference in characteristics of polymeric solution and water. For both aqueous phases, larger droplets were obtained when flow rates of oil were decreased and aqueous phases were increased. Also, the frequency of droplet generation increases and decreases by increasing oil phase flow rate and increasing aqueous phase flow rate, respectively. In the same flow rates of aqueous phase and oil, the sizes of water droplets are larger than the alginate droplets and also water has a higher frequency of droplet generation compared to alginate. Finally, we characterized all the obtained data for flow regimes due to the capillary number (Ca) of the continuous phase. The findings of this study can help for better understanding of the detailed process of droplet generation of water and alginate solution as dispersed phase separately with mineral oil as the continuous phase in a T-junction geometry microfluidic and know the effect of characteristics of solutions as a dispersed flow in flow regimes.

1.
M.
Courtney
,
X.
Chen
,
S.
Chan
,
T.
Mohamed
,
P. P.
Rao
, and
C. L.
Ren
, “
Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications
,”
Anal. Chem.
89
,
910
(
2017
).
2.
S.
Yoon
,
J. A.
Kim
,
S. H.
Lee
,
M.
Kim
, and
T. H.
Park
, “
Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles
,”
Lab Chip
13
,
1522
(
2013
).
3.
M. A.
Wahab
and E.
Y.
Erdem
, “
Multi-step microfludic reactor for the synthesis of hybrid nanoparticles
,”
J. Micromech. Microeng.
30
,
085006
(
2020
).
4.
S.
Sajjadi
,
M.
Alroaithi
,
A. S.
Chaurasia
, and
F.
Jahanzad
, “
‘On-the-fly’ fabrication of highly-ordered interconnected cylindrical and spherical porous microparticles via dual polymerization zone microfluidics
,”
Langmuir
35
,
12731
(
2019
).
5.
Y.
Gao
,
C.-X.
Zhao
, and
F.
Sainsbury
, “
Droplet shape control using microfluidics and designer biosurfactants
,”
J. Colloid Interface Sci.
584
,
528
(
2021
).
6.
W. J.
Duncanson
,
T.
Lin
,
A. R.
Abate
,
S.
Seiffert
,
R. K.
Shah
, and
D. A.
Weitz
, “
Microfluidic synthesis of advanced microparticles for encapsulation and controlled release
,”
Lab Chip
12
,
2135
(
2012
).
7.
M.
Maeki
,
N.
Kimura
,
Y.
Sato
,
H.
Harashima
, and
M.
Tokeshi
, “
Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems
,”
Adv. Drug Delivery Rev.
128
,
84
(
2018
).
8.
S. T.
Sanjay
,
W.
Zhou
,
M.
Dou
,
H.
Tavakoli
,
L.
Ma
,
F.
Xu
, and
X.
Li
, “
Recent advances of controlled drug delivery using microfluidic platforms
,”
Adv. Drug Delivery Rev.
128
,
3
(
2018
).
9.
C.
Yeung
,
S.
Chen
,
B.
King
,
H.
Lin
,
K.
King
,
F.
Akhtar
,
G.
Diaz
,
B.
Wang
,
J.
Zhu
, and
W.
Sun
, “
A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery
,”
Biomicrofluidics
13
,
064125
(
2019
).
10.
K.
Mao
,
X.
Min
,
H.
Zhang
,
K.
Zhang
,
H.
Cao
,
Y.
Guo
, and
Z.
Yang
, “
Paper-based microfluidics for rapid diagnostics and drug delivery
,”
J. Controlled Release
322
,
187
(
2020
).
11.
M.
Azarmanesh
,
M.
Dejam
,
P.
Azizian
,
G.
Yesiloz
,
A. A.
Mohamad
, and
A.
Sanati-Nezhad
, “
Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells
,”
Sci. Rep.
9
,
6723
(
2019
).
12.
S.
Mondal
,
A.
Dogonchi
,
N.
Tripathi
,
M.
Waqas
,
S. M.
Seyyedi
,
M.
Hashemi-Tilehnoee
, and
D.
Ganji
, “
A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM
,”
J. Braz. Soc. Mech. Sci. Eng.
42
,
19
(
2020
).
13.
L.
Hendraningrat
,
S.
Li
, and
O.
Torsæter
, “
A coreflood investigation of nanofluid enhanced oil recovery
,”
J. Pet. Sci. Eng.
111
,
128
(
2013
).
14.
S. S.
Murshed
and
C. N.
De Castro
,
Nanofluids: Synthesis, Properties, and Applications
(
Nova Science Publishers
, Incorporated,
2014
).
15.
P.
Yi
,
A. A.
Kayani
,
A. F.
Chrimes
,
K.
Ghorbani
,
S.
Nahavandi
,
K.
Kalantar-zadeh
, and
K.
Khoshmanesh
, “
Thermal analysis of nanofluids in microfluidics using an infrared camera
,”
Lab Chip
12
,
2520
(
2012
).
16.
M.
Mastiani
,
S.
Seo
,
S. M.
Jimenez
,
N.
Petrozzi
, and
M. M.
Kim
, “
Flow regime mapping of aqueous two-phase system droplets in flow-focusing geometries
,”
Colloids Surf., A
531
,
111
(
2017
).
17.
M.
Nekouei
and
S. A.
Vanapalli
, “
Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size
,”
Phys. Fluids
29
,
032007
(
2017
).
18.
Z.
Chen
,
J.
Xu
, and
Y.
Wang
, “
Gas-liquid-liquid multiphase flow in microfluidic systems–A review
,”
Chem. Eng. Sci.
202
,
1
(
2019
).
19.
C.-Y.
Jiang
,
L.
Dong
,
J.-K.
Zhao
,
X.
Hu
,
C.
Shen
,
Y.
Qiao
,
X.
Zhang
,
Y.
Wang
,
R. F.
Ismagilov
, and
S.-J.
Liu
, “
High-throughput single-cell cultivation on microfluidic streak plates
,”
Appl. Environ. Microbiol.
82
,
2210
(
2016
).
20.
Y.
Jiang
,
J.
Chen
,
C.
Deng
,
E. J.
Suuronen
, and
Z.
Zhong
, “
Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering
,”
Biomaterials
35
,
4969
(
2014
).
21.
K. V.
Kaler
and
R.
Prakash
, “
Droplet microfluidics for chip-based diagnostics
,”
Sensors
14
,
23283
(
2014
).
22.
H.
Tavakoli
,
W.
Zhou
,
L.
Ma
,
S.
Perez
,
A.
Ibarra
,
F.
Xu
,
S.
Zhan
, and
X.
Li
, “
Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy
,”
TrAC, Trends Anal. Chem.
117
,
13
(
2019
).
23.
H.
Zhang
,
C.
Zhang
, and
Y.
Sun
,
Double Emulsion Optofluidic Microlasers
(
International Society for Optics and Photonics
,
2019
).
24.
D.
Chong
,
X.
Liu
,
H.
Ma
,
G.
Huang
,
Y. L.
Han
,
X.
Cui
,
J.
Yan
, and
F.
Xu
, “
Advances in fabricating double-emulsion droplets and their biomedical applications
,”
Microfluid. Nanofluid.
19
,
1071
(
2015
).
25.
J.-H.
Jang
and
S.-Y.
Park
, “
pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics
,”
Sens. Actuators, B
241
,
636
(
2017
).
26.
P.
Azizian
,
M.
Azarmanesh
,
M.
Dejam
,
M.
Mohammadi
,
M.
Shamsi
,
A.
Sanati-Nezhad
, and
A. A.
Mohamad
, “
Electrohydrodynamic formation of single and double emulsions for low interfacial tension multiphase systems within microfluidics
,”
Chem. Eng. Sci.
195
,
201
(
2019
).
27.
A. C.
Hatch
,
J. S.
Fisher
,
S. L.
Pentoney
,
D. L.
Yang
, and
A. P.
Lee
, “
Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays
,”
Lab Chip
11
,
2509
(
2011
).
28.
C.
Kim
,
K. S.
Lee
,
Y. E.
Kim
,
K.-J.
Lee
,
S. H.
Lee
,
T. S.
Kim
, and
J. Y.
Kang
, “
Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability
,”
Lab Chip
9
,
1294
(
2009
).
29.
Y.
Yan
,
D.
Guo
, and
S.
Wen
, “
Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction
,”
Chem. Eng. Sci.
84
,
591
(
2012
).
30.
M.
Marquis
,
V.
Alix
,
I.
Capron
,
S.
Cuenot
, and
A.
Zykwinska
, “
Microfluidic encapsulation of pickering oil microdroplets into alginate microgels for lipophilic compound delivery
,”
ACS Biomater. Sci. Eng.
2
,
535
(
2016
).
31.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up
,”
Lab Chip
6
,
437
(
2006
).
32.
T.
Thorsen
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
,”
Phys. Rev. Lett.
86
,
4163
(
2001
).
33.
T.
Fu
,
Y.
Ma
, and
H. Z.
Li
, “
Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices
,”
Chem. Eng. Sci.
144
,
75
(
2016
).
34.
Q.
Xu
,
M.
Hashimoto
,
T. T.
Dang
,
T.
Hoare
,
D. S.
Kohane
,
G. M.
Whitesides
,
R.
Langer
, and
D. G.
Anderson
, “
Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery
,”
Small
5
,
1575
(
2009
).
35.
G. T.
Vladisavljević
,
A.
Laouini
,
C.
Charcosset
,
H.
Fessi
,
H. C.
Bandulasena
, and
R. G.
Holdich
, “
Production of liposomes using microengineered membrane and co-flow microfluidic device
,”
Colloids Surf., A
458
,
168
(
2014
).
36.
T.
Nisisako
,
T.
Torii
,
T.
Takahashi
, and
Y.
Takizawa
, “
Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co‐flow system
,”
Adv. Mater.
18
,
1152
(
2006
).
37.
E.
Van der Zwan
,
R.
Van der Sman
,
K.
Schroën
, and
R.
Boom
, “
Lattice Boltzmann simulations of droplet formation during microchannel emulsification
,”
J. Colloid Interface Sci.
335
,
112
(
2009
).
38.
L.
Bai
,
Y.
Fu
,
S.
Zhao
, and
Y.
Cheng
, “
Droplet formation in a microfluidic T-junction involving highly viscous fluid systems
,”
Chem. Eng. Sci.
145
,
141
(
2016
).
39.
G. Y.
Soh
,
G. H.
Yeoh
, and
V.
Timchenko
, “
Numerical investigation on the velocity fields during droplet formation in a microfluidic T-junction
,”
Chem. Eng. Sci.
139
,
99
(
2016
).
40.
S.
Van der Graaf
,
T.
Nisisako
,
C.
Schroën
,
R.
Van Der Sman
, and
R.
Boom
, “
Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel
,”
Langmuir
22
,
4144
(
2006
).
41.
C.
Serra
,
N.
Berton
,
M.
Bouquey
,
L.
Prat
, and
G.
Hadziioannou
, “
A predictive approach of the influence of the operating parameters on the size of polymer particles synthesized in a simplified microfluidic system
,”
Langmuir
23
,
7745
(
2007
).
42.
H.
Shieh
,
M.
Saadatmand
,
M.
Eskandari
, and
D.
Bastani
, “
Microfluidic on-chip production of microgels using combined geometries
,”
Sci. Rep.
11
,
1565
(
2021
).
43.
T.
Nisisako
,
T.
Torii
, and
T.
Higuchi
, “
Novel microreactors for functional polymer beads
,”
Chem. Eng. J.
101
,
23
(
2004
).
44.
Z.
Nie
,
M.
Seo
,
S.
Xu
,
P. C.
Lewis
,
M.
Mok
,
E.
Kumacheva
,
G. M.
Whitesides
,
P.
Garstecki
, and
H. A.
Stone
, “
Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids
,”
Microfluid. Nanofluid.
5
,
585
(
2008
).
45.
L.
Sang
,
Y.
Hong
, and
F.
Wang
, “
Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods
,”
Microfluid. Nanofluid.
6
,
621
(
2009
).
46.
S.
Bashir
,
J. M.
Rees
, and
W. B.
Zimmerman
, “
Simulations of microfluidic droplet formation using the two-phase level set method
,”
Chem. Eng. Sci.
66
,
4733
(
2011
).
47.
J.-y.
Qian
,
X.-j.
Li
,
Z.
Wu
,
Z.-j.
Jin
,
J.
Zhang
, and
B.
Sunden
, “
Slug formation analysis of liquid–liquid two-phase flow in T-junction microchannels
,”
J. Therm. Sci. Eng. Appl.
11
,
051017
(
2019
).
48.
Y.
Chao
and
H. C.
Shum
, “
Emerging aqueous two-phase systems: From fundamentals of interfaces to biomedical applications
,”
Chem. Soc. Rev.
49
,
114
(
2020
).
49.
W.
Li
,
L.
Zhang
,
X.
Ge
,
B.
Xu
,
W.
Zhang
,
L.
Qu
,
C.-H.
Choi
,
J.
Xu
,
A.
Zhang
, and
H.
Lee
, “
Microfluidic fabrication of microparticles for biomedical applications
,”
Chem. Soc. Rev.
47
,
5646
(
2018
).
50.
W.
Wang
,
M.-J.
Zhang
, and
L.-Y.
Chu
, “
Functional polymeric microparticles engineered from controllable microfluidic emulsions
,”
Acc. Chem. Res.
47
,
373
(
2014
).
51.
Q.
Xu
and
M.
Nakajima
, “
The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device
,”
Appl. Phys. Lett.
85
,
3726
(
2004
).
52.
B.-U.
Moon
,
S. G.
Jones
,
D. K.
Hwang
, and
S. S.
Tsai
, “
Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures
,”
Lab Chip
15
,
2437
(
2015
).
53.
M.
Mastiani
,
M. M.
Kim
, and
A.
Nematollahi
, “
Density maximum effects on mixed convection in a square lid-driven enclosure filled with Cu-water nanofluids
,”
Adv. Powder Technol.
28
,
197
(
2017
).
54.
J.
Berthier
,
S.
Le Vot
,
P.
Tiquet
,
N.
David
,
D.
Lauro
,
P.
Benhamou
, and
F.
Rivera
, “
Highly viscous fluids in pressure actuated flow focusing devices
,”
Sens. Actuators, A
158
,
140
(
2010
).
55.
L.
Hou
,
Y.
Ren
,
Y.
Jia
,
X.
Deng
,
W.
Liu
,
X.
Feng
, and
H.
Jiang
, “
Continuously electrotriggered core coalescence of double-emulsion drops for microreactions
,”
ACS Appl. Mater. Interfaces
9
,
12282
(
2017
).
56.
W.
Han
and
X.
Chen
, “
Numerical simulation of the droplet formation in a T-junction microchannel by a level-set method
,”
Aust. J. Chem.
71
,
957
(
2018
).
57.
E.
Olsson
and
G.
Kreiss
, “
A conservative level set method for two phase flow
,”
J. Comput. Phys.
210
,
225
(
2005
).
58.
W. B.
Zimmerman
,
Multiphysics Modeling with Finite Element Methods
(
World Scientific Publishing Company
,
2006
).
59.
M. Y. A.
Jamalabadi
,
M.
DaqiqShirazi
,
A.
Kosar
, and
M. S.
Shadloo
, “
Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction
,”
Theor. Appl. Mech. Lett.
7
,
243
(
2017
).
60.
M.
Jaworska
,
E.
Sikora
, and
J.
Ogonowski
, “
Rheological properties of nanoemulsions stabilized by Polysorbate 80
,”
Chem. Eng. Technol.
38
,
1469
(
2015
).
61.
B.
Lundberg
,
X.
Pan
,
A.
White
,
H.
Chau
, and
A.
Hotchkiss
, “
Rheology and composition of citrus fiber
,”
J. Food Eng.
125
,
97
(
2014
).
62.
C.
Authesserre
,
F.
Bottausci
,
G.
Costa
,
M.
Alessio
,
P.-Y.
Benhamou
,
B.
Icard
, and
F.
Rivera
, “
Droplet formation of highly viscous Newtonian and non-Newtonian fluids in a microfluidic flow focusing device: Scaling of droplet size and production frequency
,”
TechConnect Briefs
3
,
198–201
(
2016
).
63.
M.
Cofelice
,
F.
Cuomo
, and
F.
Lopez
, “
Rheological properties of alginate–essential oil nanodispersions
,”
Colloids Interfaces
2
,
48
(
2018
).
64.
S. G.
Sontti
and
A.
Atta
, “
CFD analysis of microfluidic droplet formation in non–Newtonian liquid
,”
Chem. Eng. J.
330
,
245
(
2017
).
65.
S.
Bashir
,
J. M.
Rees
, and
W. B.
Zimmerman
, “
Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method
,”
Int. J. Multiphase Flow
60
,
40
(
2014
).
66.
A.
Shahriari
,
M. M.
Kim
,
S.
Zamani
,
N.
Phillip
,
B.
Nasouri
, and
C. H.
Hidrovo
, “
Flow regime mapping of high inertial gas–liquid droplet microflows in flow-focusing geometries
,”
Microfluid. Nanofluid.
20
,
20
(
2016
).
67.
I.-L.
Ngo
,
S.
Woo Joo
, and
C.
Byon
, “
Effects of junction angle and viscosity ratio on droplet formation in microfluidic cross-junction
,”
J. Fluids Eng.
138
,
051202
(
2016
).
68.
B.-U.
Moon
,
N.
Abbasi
,
S. G.
Jones
,
D. K.
Hwang
, and
S. S.
Tsai
, “
Water-in-water droplets by passive microfluidic flow focusing
,”
Anal. Chem.
88
,
3982
(
2016
).
69.
R.
Seemann
,
M.
Brinkmann
,
T.
Pfohl
, and
S.
Herminghaus
, “
Droplet based microfluidics
,”
Rep. Prog. Phys.
75
,
016601
(
2012
).
70.
J. M.
Montanero
and
A. M.
Ganán-Calvo
, “
Dripping, jetting and tip streaming
,”
Rep. Prog. Phys.
83
,
097001
(
2020
).
71.
C.-X.
Zhao
and
A. P.
Middelberg
, “
Two-phase microfluidic flows
,”
Chem. Eng. Sci.
66
,
1394
(
2011
).
72.
P.
Zhu
and
L.
Wang
, “
Passive and active droplet generation with microfluidics: A review
,”
Lab Chip
17
,
34
(
2017
).
73.
D.
Lai
,
J. P.
Frampton
,
H.
Sriram
, and
S.
Takayama
, “
Rounded multi-level microchannels with orifices made in one exposure enable aqueous two-phase system droplet microfluidics
,”
Lab Chip
11
,
3551
(
2011
).
74.
J.
Nunes
,
S.
Tsai
,
J.
Wan
, and
H. A.
Stone
, “
Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis
,”
J. Phys. D: Appl. Phys.
46
,
114002
(
2013
).
75.
A.
Gupta
and
R.
Kumar
, “
Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect
,”
Phys. Fluids
22
,
122001
(
2010
).
You do not currently have access to this content.