Near-wall blood flow and wall shear stress (WSS) regulate major forms of cardiovascular disease, yet they are challenging to quantify with high fidelity. Patient-specific computational and experimental measurement of WSS suffers from uncertainty, low resolution, and noise issues. Physics-informed neural networks (PINNs) provide a flexible deep learning framework to integrate mathematical equations governing blood flow with measurement data. By leveraging knowledge about the governing equations (herein, Navier–Stokes), PINN overcomes the large data requirement in deep learning. In this study, it was shown how PINN could be used to improve WSS quantification in diseased arterial flows. Specifically, blood flow problems where the inlet and outlet boundary conditions were not known were solved by assimilating very few measurement points. Uncertainty in boundary conditions is a common feature in patient-specific computational fluid dynamics models. It was shown that PINN could use sparse velocity measurements away from the wall to quantify WSS with very high accuracy even without full knowledge of the boundary conditions. Examples in idealized stenosis and aneurysm models were considered demonstrating how partial knowledge about the flow physics could be combined with partial measurements to obtain accurate near-wall blood flow data. The proposed hybrid data-driven and physics-based deep learning framework has high potential in transforming high-fidelity near-wall hemodynamics modeling in cardiovascular disease.

1.
M.
Vardhan
and
A.
Randles
, “
Application of physics-based flow models in cardiovascular medicine: Current practices and challenges
,”
Biophys. Rev.
2
(
1
),
011302
(
2021
).
2.
A.
Arzani
,
A. M.
Gambaruto
,
G.
Chen
, and
S. C.
Shadden
, “
Lagrangian wall shear stress structures and near-wall transport in high-Schmidt-number aneurysmal flows
,”
J. Fluid Mech.
790
,
158
172
(
2016
).
3.
M.
Mahmoudi
,
A.
Farghadan
,
D. R.
McConnell
,
A. J.
Barker
,
J. J.
Wentzel
,
M. J.
Budoff
, and
A.
Arzani
, “
The story of wall shear stress in coronary artery atherosclerosis: Biochemical transport and mechanotransduction
,”
J. Biomech. Eng.
143
(
4
),
041002
(
2021
).
4.
H.
Samady
,
P.
Eshtehardi
,
M. C.
McDaniel
,
J.
Suo
,
S. S.
Dhawan
,
C.
Maynard
,
L. H.
Timmins
,
A. A.
Quyyumi
, and
D. P.
Giddens
, “
Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease
,”
Circulation
124
(
7
),
779
788
(
2011
).
5.
F. J.
Detmer
,
D.
Lückehe
,
F.
Mut
,
M.
Slawski
,
S.
Hirsch
,
P.
Bijlenga
,
G.
von Voigt
, and
J. R.
Cebral
, “
Comparison of statistical learning approaches for cerebral aneurysm rupture assessment
,”
Int. J. Comput. Assisted Radiol. Surg.
15
(
1
),
141
150
(
2020
).
6.
A.
Arzani
and
S. C.
Shadden
, “
Characterization of the transport topology in patient-specific abdominal aortic aneurysm models
,”
Phys. Fluids
24
(
8
),
081901
(
2012
).
7.
L.
Antiga
and
D. A.
Steinman
, “
Rethinking turbulence in blood
,”
Biorheology
46
(
2
),
77
81
(
2009
).
8.
A.
Arzani
and
S. C.
Shadden
, “
Wall shear stress fixed points in cardiovascular fluid mechanics
,”
J. Biomech.
73
,
145
152
(
2018
).
9.
A.
Arzani
and
S. C.
Shadden
, “
Characterizations and correlations of wall shear stress in aneurysmal flow
,”
J. Biomech. Eng.
138
(
1
),
014503
(
2016
).
10.
V.
Mazzi
,
U.
Morbiducci
,
K.
Calò
,
G.
De Nisco
,
M.
Lodi Rizzini
,
E.
Torta
,
G. C. A.
Caridi
,
C.
Chiastra
, and
D.
Gallo
, “
Wall shear stress topological skeleton analysis in cardiovascular flows: Methods and applications
,”
Mathematics
9
(
7
),
720
(
2021
).
11.
M.
Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kähler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
(
Springer
,
2018
).
12.
H.
Wang
,
Z.
Yang
,
B.
Li
, and
S.
Wang
, “
Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry
,”
Phys. Fluids
32
(
11
),
115105
(
2020
).
13.
A.
Arzani
and
S.
Dawson
, “
Data-driven cardiovascular flow modelling: Examples and opportunities
,”
J. R. Soc. Interface
18
,
20200802
(
2021
).
14.
A.
Bakhshinejad
,
A.
Baghaie
,
A.
Vali
,
D.
Saloner
,
V. L.
Rayz
, and
R. M.
D'Souza
, “
Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression
,”
J. Biomech.
58
,
162
173
(
2017
).
15.
F.
Gaidzik
,
D.
Stucht
,
C.
Roloff
,
O.
Speck
,
D.
Thévenin
, and
G.
Janiga
, “
Transient flow prediction in an idealized aneurysm geometry using data assimilation
,”
Comput. Biol. Med.
115
,
103507
(
2019
).
16.
S. W.
Funke
,
M.
Nordaas
,
Ø.
Evju
,
M. S.
Alnæs
, and
K. A.
Mardal
, “
Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example
,”
Int. J. Numer. Methods Biomed. Eng.
35
(
1
),
e3152
(
2019
).
17.
M.
Habibi
,
R. M.
D'Souza
,
S.
Dawson
, and
A.
Arzani
, “
Integrating multi-fidelity blood flow data with reduced-order data assimilation
,” arXiv:2104.01971 (
2021
).
18.
H.
Gao
and
J. X.
Wang
, “
A bi-fidelity ensemble Kalman method for PDE-constrained inverse problems in computational mechanics
,”
Comput. Mech.
67
,
1115
1117
(
2021
).
19.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
20.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Networks
2
(
5
),
359
366
(
1989
).
21.
S.
Lee
and
D.
You
, “
Data-driven prediction of unsteady flow over a circular cylinder using deep learning
,”
J. Fluid Mech.
879
,
217
254
(
2019
).
22.
H.
Wessels
,
C.
Weißenfels
, and
P.
Wriggers
, “
The neural particle method–an updated Lagrangian physics informed neural network for computational fluid dynamics
,”
Comput. Methods Appl. Mech. Eng.
368
,
113127
(
2020
).
23.
K.
Kashinath
,
M.
Mustafa
,
A.
Albert
,
J. L.
Wu
,
C.
Jiang
 et al., “
Physics-informed machine learning: Case studies for weather and climate modelling
,”
Philos. Trans. R. Soc. A
379
(
2194
),
20200093
(
2021
).
24.
D.
Lucor
,
A.
Agrawal
, and
A.
Sergent
, “
Physics-aware deep neural networks for surrogate modeling of turbulent natural convection
,” arXiv:2103.03565 (
2021
).
25.
C. F.
Gasmi
and
H.
Tchelepi
, “
Physics informed deep learning for flow and transport in porous media
,” arXiv:2104.02629 (
2021
).
26.
X.
Jin
,
S.
Cai
,
H.
Li
, and
G. E.
Karniadakis
, “
NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
426
,
109951
(
2021
).
27.
L.
Lu
,
X.
Meng
,
Z.
Mao
, and
G. E.
Karniadakis
, “
DeepXDE: A deep learning library for solving differential equations
,”
SIAM Rev.
63
(
1
),
208
228
(
2021
).
28.
O.
Hennigh
,
S.
Narasimhan
,
M. A.
Nabian
,
A.
Subramaniam
,
K.
Tangsali
,
M.
Rietmann
 et al., “
Nvidia simnet™: An AI-accelerated multi-physics simulation framework
,” arXiv:2012.07938 (
2020
).
29.
L.
Sun
,
H.
Gao
,
S.
Pan
, and
J. X.
Wang
, “
Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
,”
Comput. Methods Appl. Mech. Eng.
361
,
112732
(
2020
).
30.
M.
Raissi
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
(
6481
),
1026
1030
(
2020
).
31.
S.
Cai
,
H.
Li
,
F.
Zheng
,
F.
Kong
,
M.
Dao
,
G. E.
Karniadakis
, and
S.
Suresh
, “
Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
,”
Proc. Natl. Acad. Sci.
118
(
13
),
e2100697118
(
2021
).
32.
G.
Kissas
,
Y.
Yang
,
E.
Hwuang
,
W. R.
Witschey
,
J. A.
Detre
, and
P.
Perdikaris
, “
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
,”
Comput. Methods Appl. Mech. Eng.
358
,
112623
(
2020
).
33.
B.
Reyes
,
A. A.
Howard
,
P.
Perdikaris
, and
A. M.
Tartakovsky
, “
Learning unknown physics of non-Newtonian fluids
,” arXiv:2009.01658 (
2020
).
34.
M.
Liu
,
L.
Liang
, and
W.
Sun
, “
A generic physics-informed neural network-based constitutive model for soft biological tissues
,”
Comput. Methods Appl. Mech. Eng.
372
,
113402
(
2020
).
35.
S.
Buoso
,
T.
Joyce
, and
S.
Kozerke
, “
Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks
,”
Med. Image Anal.
71
,
102066
(
2021
).
36.
B.
Liu
,
J.
Tang
,
H.
Huang
, and
X. Y.
Lu
, “
Deep learning methods for super-resolution reconstruction of turbulent flows
,”
Phys. Fluids
32
(
2
),
025105
(
2020
).
37.
A.
Güemes
,
H.
Tober
,
S.
Discetti
,
A.
Ianiro
,
B.
Sirmacek
,
H.
Azizpour
, and
R.
Vinuesa
, “
From coarse wall measurements to turbulent velocity fields with deep learning
,” arXiv:2103.07387 (
2021
).
38.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
,”
J. Fluid Mech.
909
,
A9
(
2021
).
39.
H.
Gao
,
L.
Sun
, and
J. X.
Wang
, “
Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
,” arXiv:2011.02364 (
2020
).
40.
M. F.
Fathi
,
I.
Perez-Raya
,
A.
Baghaie
,
P.
Berg
,
G.
Janiga
,
A.
Arzani
, and
R. M.
D'Souza
, “
Super-resolution and denoising of 4D-Flow MRI using physics-informed deep neural nets
,”
Comput. Methods Programs Biomed.
197
,
105729
(
2020
).
41.
L.
Guastoni
,
M. P.
Encinar
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Prediction of wall-bounded turbulence from wall quantities using convolutional neural networks
,”
J. Phys.: Conf. Ser.
1522
,
012022
(
2020
).
42.
G. C. Y.
Peng
,
M.
Alber
,
A. B.
Tepole
,
W. R.
Cannon
,
S.
De
,
S.
Dura-Bernal
,
K.
Garikipati
,
G.
Karniadakis
,
W. W.
Lytton
,
P.
Perdikaris
,
L.
Petzold
, and
E.
Kuhl
, “
Multiscale modeling meets machine learning: What can we learn?
,”
Arch. Comput. Methods Eng.
28
,
1017
1021
(
2021
).
43.
P.
Ramachandran
,
B.
Zoph
, and
Q. V.
Le
, “
Searching for activation functions
,” arXiv:1710.05941 (
2017
).
44.
A.
Logg
,
K. A.
Mardal
, and, and
G.
Wells
,
Automated Solution of Differential Equations by the Finite Element Method
(
Springer
,
Berlin/Heidelberg
,
2012
), Vol.
84
.
45.
K.
Leiderman
and
A. L.
Fogelson
, “
Grow with the flow: A spatial–temporal model of platelet deposition and blood coagulation under flow
,”
Math. Med. Biol.
28
(
1
),
47
84
(
2011
).
46.
K. B.
Hansen
,
A.
Arzani
, and
S. C.
Shadden
, “
Finite element modeling of near-wall mass transport in cardiovascular flows
,”
Int. J. Numer. Methods Biomed. Eng.
35
(
1
),
e3148
(
2019
).
47.
S. C.
Shadden
and
S.
Hendabadi
, “
Potential fluid mechanic pathways of platelet activation
,”
Biomech. Model. Mechanobiol.
12
(
3
),
467
474
(
2013
).
48.
A.
Arzani
, “
Coronary artery plaque growth: A two-way coupled shear stress–driven model
,”
Int. J. Numer. Methods Biomed. Eng.
36
(
1
),
e3293
(
2020
).
49.
H.
Baek
,
M. V.
Jayaraman
,
P. D.
Richardson
, and
G. E.
Karniadakis
, “
Flow instability and wall shear stress variation in intracranial aneurysms
,”
J. R. Soc. Interface
7
(
47
),
967
988
(
2010
).
50.
J. R.
Cebral
,
F.
Mut
,
J.
Weir
, and
C. M.
Putman
, “
Association of hemodynamic characteristics and cerebral aneurysm rupture
,”
Am. J. Neuroradiol.
32
(
2
),
264
270
(
2011
).
51.
Y. I.
Cho
,
M. P.
Mooney
, and
D. J.
Cho
, “
Hemorheological disorders in diabetes mellitus
,”
J. Diabetes Sci. Technol.
2
(
6
),
1130
1138
(
2008
).
52.
A.
Arzani
, “
Accounting for residence-time in blood rheology models: Do we really need non-Newtonian blood flow modelling in large arteries?
,”
J. R. Soc. Interface
15
(
146
),
20180486
(
2018
).
53.
N. J.
Nair
and
A.
Goza
, “
Leveraging reduced-order models for state estimation using deep learning
,”
J. Fluid Mech.
897
,
R1
(
2020
).
54.
M.
Habibi
,
S. T. M.
Dawson
, and
A.
Arzani
, “
Data-driven pulsatile blood flow physics with dynamic mode decomposition
,”
Fluids
5
(
3
),
111
(
2020
).
55.
A. E.
Perry
and
M. S.
Chong
, “
A series-expansion study of the Navier–Stokes equations with applications to three-dimensional separation patterns
,”
J. Fluid Mech.
173
,
207
223
(
1986
).
56.
A. M.
Gambaruto
,
D. J.
Doorly
, and
T.
Yamaguchi
, “
Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis
,”
J. Comput. Phys.
229
(
14
),
5339
5356
(
2010
).
57.
M.
Milano
and
P.
Koumoutsakos
, “
Neural network modeling for near wall turbulent flow
,”
J. Comput. Phys.
182
(
1
),
1
26
(
2002
).
58.
B.
Su
,
J. M.
Zhang
,
H.
Zou
,
D.
Ghista
,
T. T.
Le
, and
C.
Chin
, “
Generating wall shear stress for coronary artery in real-time using neural networks: Feasibility and initial results based on idealized models
,”
Comput. Biol. Med.
126
,
104038
(
2020
).
59.
B.
Feiger
,
J.
Gounley
,
D.
Adler
,
J. A.
Leopold
,
E. W.
Draeger
,
R.
Chaudhury
,
J.
Ryan
,
G.
Pathangey
,
K.
Winarta
,
D.
Frakes
,
F.
Michor
, and
A.
Randles
, “
Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks
,”
Sci. Rep.
10
(
1
),
9508
(
2020
).
60.
S. L.
Brunton
,
J. N.
Kutz
,
K.
Manohar
,
A. Y.
Aravkin
 et al., “
Data-driven aerospace engineering: Reframing the industry with machine learning
,” arXiv:2008.10740 (
2020
).
61.
N. K.
Chakshu
,
I.
Sazonov
, and
P.
Nithiarasu
, “
Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis
,”
Biomech. Model. Mechanobiol.
20
(
2
),
449
465
(
2021
).
62.
K.
Manohar
,
B. W.
Brunton
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
,”
IEEE Control Syst. Mag.
38
(
3
),
63
86
(
2018
).
63.
Z.
Deng
,
C.
He
, and
Y.
Liu
, “
Deep neural network-based strategy for optimal sensor placement in data assimilation of turbulent flow
,”
Phys. Fluids
33
(
2
),
025119
(
2021
).
64.
H.
Gao
,
L.
Sun
, and
J. X.
Wang
, “
PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
,”
J. Comput. Phys.
428
,
110079
(
2021
).
65.
S.
Wang
,
X.
Yu
, and
P.
Perdikaris
, “
When and why PINNs fail to train: A neural tangent kernel perspective
,” arXiv:2007.14527 (
2020
).
66.
L.
Sun
and
J. X.
Wang
, “
Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data
,”
Theory Appl. Mech. Lett.
10
(
3
),
161
169
(
2020
).
67.
X.
Meng
and
G. E.
Karniadakis
, “
A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
,”
J. Comput. Phys.
401
,
109020
(
2020
).
You do not currently have access to this content.