Biodegradable plastics are thought to be the possible directions in managing plastic pollutions. Unfortunately, they are not recycled in most countries since they are designed to decompose even though recycling is a more pragmatic method than landfill or incineration. Thus, it is more constructive to develop methods to recycle biodegradable plastics or to develop biodegradable yet recyclable plastics. In this study, we used cutlery with a composite of poly(lactic acid) (PLA) and talc. The possibility to recycle it to make foams was studied even though it will have lowered mechanical strength from the recycling process as it is less significant for this product. Tensile properties of solid PLA and foams showed no significant decrease in the strength up to three processes of compression molding and foaming. We performed shear rheometry to determine the thermal stability and dependences of the complex viscosity on frequency and temperature. The magnitude of the complex viscosity dramatically increased with decreasing frequency and such an upturn increased with temperature, but time-temperature superposition was valid at high temperatures. The extensional rheometry showed no strain hardening, but physical foaming using supercritical carbon dioxide (CO2) could still occur, and the operating conditions to obtain various foamed structures were determined. We also compared the effects of one-directional against three-dimensional expansion. Overall, the concentration of CO2 in PLA and crystallinity of the foams are the two key variables to describe the bulkiness of foams. Surprisingly, the lower the CO2 concentration, the bulkier the foams at any sorption temperature and pressure.

1.
X.
Quecholac-Piña
,
M. d. C.
Hernández-Berriel
,
M. d. C.
Mañón-Salas
,
R. M.
Espinosa-Valdemar
, and
A.
Vázquez-Morillas
, “
Degradation of plastics under anaerobic conditions: A short review
,”
Polymers
12
(
1
),
109
(
2020
).
2.
J. A.
Glaser
, “
Biological degradation of polymers in the environment
,” in
Plastics in the Environment
(
IntechOpen
,
2019
).
3.
A.
Chamas
 et al, “
Degradation rates of plastics in the environment
,”
ACS Sustainable Chem. Eng.
8
(
9
),
3494
3511
(
2020
).
4.
J.
Sills
and
T. M.
Adyel
, “
Accumulation of plastic waste during COVID-19
,”
Science
369
(
6509
),
1314
1315
(
2020
).
5.
J.
Xi
,
X. A.
Si
, and
R.
Nagarajan
, “
Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway
,”
Phys. Fluids
32
(
12
),
123312
(
2020
).
6.
J.
Hopewell
,
R.
Dvorak
, and
E.
Kosior
, “
Plastics recycling: Challenges and opportunities
,”
Philos. Trans. R. Soc., B
364
(
1526
),
2115
2126
(
2009
).
7.
A. L.
Patrício Silva
 et al, “
Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations
,”
Chem. Eng. J.
405
,
126683
(
2021
).
8.
A.
Lendlein
and
A.
Sisson
,
Handbook of Biodegradable Polymers
(
Wiley
,
2011
).
9.
J. P.
Harrison
,
C.
Boardman
,
K.
O'Callaghan
,
A.-M.
Delort
, and
J.
Song
, “
Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review
,”
R. Soc. Open Sci.
5
(
5
),
171792
(
2018
).
10.
F.
Degli Innocenti
and
T.
Breton
, “
Intrinsic biodegradability of plastics and ecological risk in the case of leakage
,”
ACS Sustainable Chem. Eng.
8
(
25
),
9239
9249
(
2020
).
11.
A.
Jiménez
,
M.
Peltzer
, and
R.
Ruseckaite
,
Poly(Lactic Acid) Science and Technology, Polymer Chemistry Series
(
RCS
,
Cambridge
,
2014
).
12.
T. S. B.
Lee
and
S.
Tueen
,
Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA
, 2nd ed. (
Elsevier
,
Oxford
,
2019
).
13.
B.
Kalb
and
A. J.
Pennings
, “
General crystallization behaviour of poly(l-lactic acid)
,”
Polymer
21
(
6
),
607
612
(
1980
).
14.
Y.
Ikada
,
K.
Jamshidi
,
H.
Tsuji
, and
S. H.
Hyon
, “
Stereocomplex formation between enantiomeric poly(lactides)
,”
Macromolecules
20
(
4
),
904
906
(
1987
).
15.
S.
Saeidlou
,
M. A.
Huneault
,
H.
Li
,
P.
Sammut
, and
C. B.
Park
, “
Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes
,”
Polymer
53
(
25
),
5816
5824
(
2012
).
16.
A.
Michalski
,
T.
Makowski
,
T.
Biedroń
,
M.
Brzeziński
, and
T.
Biela
, “
Controlling polylactide stereocomplex (sc-PLA) self-assembly: From microspheres to nanoparticles
,”
Polymer
90
,
242
248
(
2016
).
17.
H. J.
Lehermeier
and
J. R.
Dorgan
, “
Melt rheology of poly(lactic acid): Consequences of blending chain architectures
,”
Polym. Eng. Sci.
41
(
12
),
2172
2184
(
2001
).
18.
J. R.
Dorgan
,
J.
Janzen
,
M. P.
Clayton
,
S. B.
Hait
, and
D. M.
Knauss
, “
Melt rheology of variable L-content poly(lactic acid)
,”
J. Rheol.
49
(
3
),
607
619
(
2005
).
19.
N.
Othman
,
C.
Xu
,
P.
Mehrkhodavandi
, and
S. G.
Hatzikiriakos
, “
Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends
,”
Polymer
53
(
12
),
2443
2452
(
2012
).
20.
M.
Nofar
,
R.
Salehiyan
, and
S.
Sinha Ray
, “
Rheology of poly (lactic acid)-based systems
,”
Polym. Rev.
59
(
3
),
465
509
(
2019
).
21.
J.
Wang
,
W.
Zhu
,
H.
Zhang
, and
C. B.
Park
, “
Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity
,”
Chem. Eng. Sci.
75
,
390
399
(
2012
).
22.
M.
Nofar
and
C. B.
Park
, “
Poly (lactic acid) foaming
,”
Prog. Polym. Sci.
39
(
10
),
1721
1741
(
2014
).
23.
J. M.
Julien
,
J. C.
Quantin
,
J. C.
Bénézet
,
A.
Bergeret
,
M. F.
Lacrampe
, and
P.
Krawczak
, “
Chemical foaming extrusion of poly(lactic acid) with chain-extenders: Physical and morphological characterizations
,”
Eur. Polym. J.
67
,
40
49
(
2015
).
24.
A.
Tabatabaei
and
C. B.
Park
, “
In situ visualization of PLA crystallization and crystal effects on foaming in extrusion
,”
Eur. Polym. J.
96
,
505
519
(
2017
).
25.
Y.
Yang
 et al, “
Foaming of poly(lactic acid) with supercritical CO2: The combined effect of crystallinity and crystalline morphology on cellular structure
,”
J. Supercrit. Fluids
145
,
122
132
(
2019
).
26.
M. F.
Cosate de Andrade
,
P. M. S.
Souza
,
O.
Cavalett
, and
A. R.
Morales
, “
Life cycle assessment of poly(lactic acid) (PLA): Comparison between chemical recycling, mechanical recycling and composting
,”
J. Polym. Environ.
24
(
4
),
372
384
(
2016
).
27.
P.
McKeown
and
M. D.
Jones
, “
The chemical recycling of PLA: A review
,”
Sustainable Chem.
1
(
1
),
1
22
(
2020
).
28.
E. O.
Cisneros-López
 et al, “
Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding
,”
Mater. Today Sustainability
7–8
,
100027
(
2020
).
29.
D.
Garlotta
, “
A literature review of poly(lactic acid)
,”
J. Polym. Environ.
9
(
2
),
63
84
(
2001
).
30.
M.
Cristea
,
D.
Ionita
, and
M. M.
Iftime
, “
Dynamic mechanical analysis investigations of PLA-based renewable materials: How are they useful?
,”
Materials
13
(
22
),
5302
(
2020
).
31.
M. L.
Di Lorenzo
and
R.
Androsch
,
Industrial Applications of Poly(Lactic Acid), Advances in Polymer Science
(
Springer
,
2018
).
32.
K.
Madhavan Nampoothiri
,
N. R.
Nair
, and
R. P.
John
, “
An overview of the recent developments in polylactide (PLA) research
,”
Bioresour. Technol.
101
(
22
),
8493
8501
(
2010
).
33.
J.
Ren
,
Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications
(
Springer
,
2011
).
34.
R.
Auras
,
B.
Harte
, and
S.
Selke
, “
An overview of polylactides as packaging materials
,”
Macromol. Biosci.
4
(
9
),
835
864
(
2004
).
35.
T.
Casalini
,
F.
Rossi
,
A.
Castrovinci
, and
G.
Perale
, “
A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications
,”
Front. Bioeng. Biotechnol.
7
,
259
(
2019
).
36.
M.
Murariu
and
P.
Dubois
, “
PLA composites: From production to properties
,”
Adv. Drug Delivery Rev.
107
,
17
46
(
2016
).
37.
D. E.
Henton
,
P.
Gruber
,
J.
Lunt
, and
J.
Randall
, “
Polylactic acid technology
,” in
Natural Fibers, Biopolymers, and Biocomposites
, 1st ed., edited by
A. K.
Mohanty
,
M.
Misra
, and
L. T.
Drzal
(
CRC Press
,
Boca Raton
,
2005
).
38.
R.
Auras
,
L.-T.
Lim
,
S. E. M.
Selke
, and
H.
Tsuji
,
Poly(Lactic Acid)
(
Wiley
,
2010
).
39.
L. T.
Sin
and
B. S.
Tueen
,
Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA
, 2nd ed., Polylactic Acid (
Elsevier
,
Oxford
,
2019
).
40.
M.
Nofar
and
C. B.
Park
,
Polylactide Foams: Fundamentals, Manufacturing, and Applications
(
Elsevier
,
Oxford
,
2018
), pp.
17
34
.
41.
L. T.
Lim
,
R.
Auras
, and
M.
Rubino
, “
Processing technologies for poly(lactic acid)
,”
Prog. Polym. Sci.
33
(
8
),
820
852
(
2008
).
42.
M. L.
Di Lorenzo
and
R.
Androsch
,
Synthesis, Structure and Properties of Poly(Lactic Acid), Advances in Polymer Science
(
Springer
,
2018
).
43.
N.
Weingart
,
D.
Raps
,
M.
Lu
,
L.
Endner
, and
V.
Altstädt
, “
Comparison of the foamability of linear and long-chain branched polypropylene—The legend of strain-hardening as a requirement for good foamability
,”
Polymers
12
(
3
),
725
(
2020
).
44.
M. R.
Snowdon
,
F.
Wu
,
A. K.
Mohanty
, and
M.
Misra
, “
Comparative study of the extrinsic properties of poly(lactic acid)-based biocomposites filled with talc versus sustainable biocarbon
,”
RSC Adv.
9
(
12
),
6752
6761
(
2019
).
45.
Y.-P.
Song
,
D.-Y.
Wang
,
X.-L.
Wang
,
L.
Lin
, and
Y.-Z.
Wang
, “
A method for simultaneously improving the flame retardancy and toughness of PLA
,”
Polym. Adv. Technol.
22
(
12
),
2295
2301
(
2011
).
46.
F.
Yu
,
T.
Liu
,
X.
Zhao
,
X.
Yu
,
A.
Lu
, and
J.
Wang
, “
Effects of talc on the mechanical and thermal properties of polylactide
,”
J. Appl. Polym. Sci.
125
(
S2
),
E99
E109
(
2012
).
47.
A. M.
Harris
and
E. C.
Lee
, “
Improving mechanical performance of injection molded PLA by controlling crystallinity
,”
J. Appl. Polym. Sci.
107
(
4
),
2246
2255
(
2008
).
48.
X.
Liu
,
X.
Liu
, and
Y.
Hu
, “
Investigation of the thermal decomposition of talc
,”
Clays Clay Miner.
62
(
2
),
137
144
(
2014
).
49.
L.
Cui
,
Y.
Wang
,
R.
Zhang
, and
Y.
Liu
, “
Design high heat-resistant stereocomplex poly(lactide acid) by cross-linking and plasticizing
,”
Adv. Polym. Technol.
37
(
7
),
2429
2435
(
2018
).
50.
N. S.
Oliveira
,
J.
Dorgan
,
J. A. P.
Coutinho
,
A.
Ferreira
,
J. L.
Daridon
, and
I. M.
Marrucho
, “
Gas solubility of carbon dioxide in poly(lactic acid) at high pressures
,”
J. Polym. Sci., Part B: Polym. Phys.
44
(
6
),
1010
1019
(
2006
).
51.
N. S.
Oliveira
,
J.
Oliveira
,
T.
Gomes
,
A.
Ferreira
,
J.
Dorgan
, and
I. M.
Marrucho
, “
Gas sorption in poly(lactic acid) and packaging materials
,”
Fluid Phase Equilib.
222–223
,
317
324
(
2004
).
52.
L.
Bao
,
J. R.
Dorgan
,
D.
Knauss
,
S.
Hait
,
N. S.
Oliveira
, and
I. M.
Maruccho
, “
Gas permeation properties of poly(lactic acid) revisited
,”
J. Membr. Sci.
285
(
1–2
),
166
172
(
2006
).
53.
J. R.
Rocca-Smith
 et al, “
How high pressure CO2 impacts PLA film properties
,”
eXPRESS Polym. Lett.
11
(
4
),
320
333
(
2017
).
54.
G.
Li
,
H.
Li
,
L. S.
Turng
,
S.
Gong
, and
C.
Zhang
, “
Measurement of gas solubility and diffusivity in polylactide
,”
Fluid Phase Equilib.
246
(
1–2
),
158
166
(
2006
).
55.
S. H.
Mahmood
,
M.
Keshtkar
, and
C. B.
Park
, “
Determination of carbon dioxide solubility in polylactide acid with accurate PVT properties
,”
J. Chem. Thermodyn.
70
,
13
23
(
2014
).
56.
H. E.
Park
and
J. M.
Dealy
, “
Effects of pressure and supercritical fluids on the viscosity of polyethylene
,”
Macromolecules
39
(
16
),
5438
5452
(
2006
).
57.
I. C.
Sanchez
and
R. H.
Lacombe
, “
An elementary molecular theory of classical fluids. Pure fluids
,”
J. Phys. Chem.
80
(
21
),
2352
2362
(
1976
).
58.
I. C.
Sanchez
and
R. H.
Lacombe
, “
Statistical thermodynamics of polymer solutions
,”
Macromolecules
11
(
6
),
1145
1156
(
1978
).
59.
M. B.
Kiszka
,
M. A.
Meilchen
, and
M. A.
McHugh
, “
Modeling high-pressure gas–polymer mixtures using the Sanchez–Lacombe equation of state
,”
J. Appl. Polym. Sci.
36
(
3
),
583
597
(
1988
).
60.
G.
Li
,
J.
Wang
,
C. B.
Park
, and
R.
Simha
, “
Measurement of gas solubility in linear/branched PP melts
,”
J. Polym. Sci., Part B: Polym. Phys.
45
(
17
),
2497
2508
(
2007
).
61.
R.
Simha
and
T.
Somcynsky
, “
On the statistical thermodynamics of spherical and chain molecule fluids
,”
Macromolecules
2
(
4
),
342
350
(
1969
).
62.
R. K.
Jain
and
R.
Simha
, “
Statistical thermodynamics of multicomponent fluids. 2. Equation of state and phase relations
,”
Macromolecules
17
(
12
),
2663
2668
(
1984
).
63.
Y. G.
Li
,
C. B.
Park
,
H. B.
Li
, and
J.
Wang
, “
Measurement of the PVT property of PP/CO2 solution
,”
Fluid Phase Equilib.
270
(
1–2
),
15
22
(
2008
).
64.
K.
Sarikhani
,
K.
Jeddi
,
R. B.
Thompson
,
C. B.
Park
, and
P.
Chen
, “
Effect of pressure and temperature on interfacial tension of poly lactic acid melt in supercritical carbon dioxide
,”
Thermochim. Acta
609
,
1
6
(
2015
).
65.
Y. G.
Li
,
S. H.
Mahmood
, and
C. B.
Park
, “
Visualization for measuring the PVT property of viscoelastic polystyrene/CO2 mixtures at elevated temperatures and pressures
,”
Polym. Test.
55
,
88
96
(
2016
).
66.
A.
Phan
,
D.
Fan
, and
A.
Striolo
, “
Fluid transport through heterogeneous pore matrices: Multiscale simulation approaches
,”
Phys. Fluids
32
(
10
),
101301
(
2020
).
67.
L. M.
Matuana
, “
Foaming
,” in
Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications
, edited by
R. A.
Auras
,
L.-T. S.
Lim
,
E. M.
Susan
, and
H.
Tsuji
(
Wiley
,
2010
), pp.
273
291
.
68.
E. S.
Kim
,
H. E.
Park
,
C. R.
Lopez-Barron
, and
P. C.
Lee
, “
Enhanced foamability with shrinking microfibers in linear polymer
,”
Polymers
11
(
2
),
211
(
2019
).
69.
V.
Speranza
,
A. D.
Meo
, and
R.
Pantani
, “
Thermal and hydrolytic degradation kinetics of PLA in the molten state
,”
Polym. Degrad. Stab.
100
,
37
41
(
2014
).
70.
H. E.
Park
,
S. T.
Lim
,
H. M.
Laun
, and
J. M.
Dealy
, “
Measurement of pressure coefficient of melt viscosity: Drag flow versus capillary flow
,”
Rheol. Acta
47
(
9
),
1023
1038
(
2008
).
71.
S. W.
Li
,
H. E.
Park
, and
J. M.
Dealy
, “
Evaluation of molecular linear viscoelastic models for polydisperse H polybutadienes
,”
J. Rheol.
55
(
6
),
1341
1373
(
2011
).
72.
N. M.
Rudolph
,
A. C.
Agudelo
,
J. C.
Granada
,
H. E.
Park
, and
T. A.
Osswald
, “
WLF model for the pressure dependence of zero shear viscosity of polycarbonate
,”
Rheol. Acta
55
(
8
),
673
681
(
2016
).
73.
H. E.
Park
,
J. M.
Dealy
,
G. R.
Marchand
,
J.
Wang
,
S.
Li
, and
R. A.
Register
, “
Rheology and structure of molten, olefin multiblock copolymers
,”
Macromolecules
43
(
16
),
6789
6799
(
2010
).
74.
R. E.
Hudson
,
A. J.
Holder
,
K. M.
Hawkins
,
P. R.
Williams
, and
D. J.
Curtis
, “
An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers
,”
Phys. Fluids
29
(
12
),
121602
(
2017
).
75.
M.
Sentmanat
,
B. N.
Wang
, and
G. H.
McKinley
, “
Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform
,”
J. Rheol.
49
(
3
),
585
606
(
2005
).
76.
M. L.
Sentmanat
, “
Miniature universal testing platform: From extensional melt rheology to solid-state deformation behavior
,”
Rheol. Acta
43
(
6
),
657
669
(
2004
).
77.
G.
Nasif
,
R.
Balachandar
, and
R. M.
Barron
, “
Supercritical flow characteristics in smooth open channels with different aspect ratios
,”
Phys. Fluids
32
(
10
),
105102
(
2020
).
78.
S.
DeSouza
and
C.
Segal
, “
Sub- and supercritical jet disintegration
,”
Phys. Fluids
29
(
4
),
047107
(
2017
).
79.
Q.
Guo
,
J.
Wang
,
C. B.
Park
, and
M.
Ohshima
, “
A microcellular foaming simulation system with a high pressure-drop rate
,”
Ind. Eng. Chem. Res.
45
(
18
),
6153
6161
(
2006
).
80.
C. B.
Park
,
D. F.
Baldwin
, and
N. P.
Suh
, “
Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers
,”
Polym. Eng. Sci.
35
(
5
),
432
440
(
1995
).
81.
H.
Zuo
,
F.
Javadpour
,
S.
Deng
, and
H.
Li
, “
Liquid slippage on rough hydrophobic surfaces with and without entrapped bubbles
,”
Phys. Fluids
32
(
8
),
082003
(
2020
).
82.
Y.
Sato
 et al, “
Pressure-volume-temperature behavior of polylactide, poly(butylene succinate), and poly(butylene succinate-co-adipate)
,”
Polym. Eng. Sci.
40
(
12
),
2602
2609
(
2000
).
83.
G. T.
Dee
and
D. J.
Walsh
, “
Equations of state for polymer liquids
,”
Macromolecules
21
(
3
),
811
815
(
1988
).
84.
G. T.
Dee
and
D. J.
Walsh
, “
A modified cell model equation of state for polymer liquids
,”
Macromolecules
21
(
3
),
815
817
(
1988
).
85.
A. K.
Mehrjerdi
,
T.
Bashir
, and
M.
Skrifvars
, “
Melt rheology and extrudate swell properties of talc filled polyethylene compounds
,”
Heliyon
6
(
5
),
e04060
(
2020
).
86.
D.
Xu
,
K.
Yu
,
K.
Qian
, and
C. B.
Park
, “
Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO2
,”
J. Thermoplast. Compos. Mater.
31
(
1
),
61
78
(
2018
).
87.
V.
Kumar
and
N. P.
Suh
, “
A process for making microcellular thermoplastic parts
,”
Polym. Eng. Sci.
30
(
20
),
1323
1329
(
1990
).
88.
G.
Finotello
,
J. T.
Padding
,
N. G.
Deen
,
A.
Jongsma
,
F.
Innings
, and
J. A. M.
Kuipers
, “
Effect of viscosity on droplet-droplet collisional interaction
,”
Phys. Fluids
29
(
6
),
067102
(
2017
).
89.
T.
Dong
,
W. H.
Weheliye
,
P.
Chausset
, and
P.
Angeli
, “
An experimental study on the drop/interface partial coalescence with surfactants
,”
Phys. Fluids
29
(
10
),
102101
(
2017
).
90.
N.
Barai
and
N.
Mandal
, “
Breakup modes of fluid drops in confined shear flows
,”
Phys. Fluids
28
(
7
),
073302
(
2016
).
91.
K.
Feigl
,
A.
Baniabedalruhman
,
F. X.
Tanner
, and
E. J.
Windhab
, “
Numerical simulations of the breakup of emulsion droplets inside a spraying nozzle
,”
Phys. Fluids
28
(
12
),
123103
(
2016
).
92.
I.
Cuellar
,
P. D.
Ravazzoli
,
J. A.
Diez
, and
A. G.
González
, “
Drop pattern resulting from the breakup of a bidimensional grid of liquid filaments
,”
Phys. Fluids
29
(
10
),
102103
(
2017
).
93.
S.
Jain
,
M.
Misra
,
A. K.
Mohanty
, and
A. K.
Ghosh
, “
Thermal, mechanical and rheological behavior of poly(lactic acid)/talc composites
,”
J. Polym. Environ.
20
(
4
),
1027
1037
(
2012
).
94.
M.
Derakhshandeh
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Quiescent and shear-induced crystallization of polyprophylenes
,”
Rheol. Acta
53
(
7
),
519
535
(
2014
).
95.
J. S.
Tiang
and
J. M.
Dealy
, “
Shear-induced crystallization of isotactic polypropylene studied by simultaneous light intensity and rheological measurements
,”
Polym. Eng. Sci.
52
(
4
),
835
848
(
2012
).
96.
M.
Nofar
,
A.
Tabatabaei
,
A.
Ameli
, and
C. B.
Park
, “
Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He
,”
Polymer
54
(
23
),
6471
6478
(
2013
).
97.
J. R.
Dorgan
,
J. S.
Williams
, and
D. N.
Lewis
, “
Melt rheology of poly(lactic acid): Entanglement and chain architecture effects
,”
J. Rheol.
43
(
5
),
1141
1155
(
1999
).
98.
M.
Nofar
,
W.
Zhu
,
C. B.
Park
, and
J.
Randall
, “
Crystallization kinetics of linear and long-chain-branched polylactide
,”
Ind. Eng. Chem. Res.
50
(
24
),
13789
13798
(
2011
).
99.
S.
Saeidlou
,
M. A.
Huneault
,
H.
Li
, and
C. B.
Park
, “
Poly(lactic acid) stereocomplex formation: Application to PLA rheological property modification
,”
J. Appl. Polym. Sci.
131
(
22
),
41073
(
2014
).
100.
T. S.
Stephens
,
H. H.
Winter
, and
M.
Gottlieb
, “
The steady shear viscosity of filled polymeric liquids described by a linear superposition of two relaxation mechanisms
,”
Rheol. Acta
27
(
3
),
263
272
(
1988
).
101.
D. C.
Goel
, “
Effect of polymeric additives on the rheological properties of talc-filled polypropylene
,”
Polym. Eng. Sci.
20
(
3
),
198
201
(
1980
).
102.
M. M.
Reddy
and
A.
Singh
, “
Shear-induced particle migration and size segregation in bidisperse suspension flowing through symmetric T-shaped channel
,”
Phys. Fluids
31
(
5
),
053305
(
2019
).
103.
B.
Chun
,
I.
Kwon
,
H. W.
Jung
, and
J. C.
Hyun
, “
Lattice Boltzmann simulation of shear-induced particle migration in plane Couette–Poiseuille flow: Local ordering of suspension
,”
Phys. Fluids
29
(
12
),
121605
(
2017
).
104.
G. A.
Roure
and
F. R.
Cunha
, “
Hydrodynamic dispersion and aggregation induced by shear in non-Brownian magnetic suspensions
,”
Phys. Fluids
30
(
12
),
122002
(
2018
).
105.
S.
Joung
,
M.
Song
, and
D.
Kim
, “
Synthetic capsule breakup in simple shear flow
,”
Phys. Fluids
32
(
11
),
113603
(
2020
).
106.
B.
Rotenberg
,
A. J.
Patel
, and
D.
Chandler
, “
Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic
,”
J. Am. Chem. Soc.
133
(
50
),
20521
20527
(
2011
).
107.
C.
Charnay
,
S.
Lagerge
, and
S.
Partyka
, “
Assessment of the surface heterogeneity of talc materials
,”
J. Colloid Interface Sci.
233
(
2
),
250
258
(
2001
).
108.
M.
Ebrahimi
,
V. K.
Konaganti
, and
S. G.
Hatzikiriakos
, “
Dynamic slip of polydisperse linear polymers using partitioned plate
,”
Phys. Fluids
30
(
3
),
030601
(
2018
).
109.
F.
Yeganehdoust
,
R.
Attarzadeh
,
A.
Dolatabadi
, and
I.
Karimfazli
, “
A comparison of bioinspired slippery and superhydrophobic surfaces: Micro-droplet impact
,”
Phys. Fluids
33
(
2
),
022105
(
2021
).
110.
M.
Najm
and
S. G.
Hatzikiriakos
, “
Flow-induced fractionation effects on slip of polydisperse polymer melts
,”
Phys. Fluids
32
(
7
),
073109
(
2020
).
111.
H. E.
Park
,
S. T.
Lim
,
F.
Smillo
,
J. M.
Dealy
, and
C. G.
Robertson
, “
Wall slip and spurt flow of polybutadiene
,”
J. Rheol.
52
(
5
),
1201
1239
(
2008
).
112.
H. E.
Park
,
P. C.
Lee
, and
C. W.
Macosko
, “
Polymer-polymer interfacial slip by direct visualization and by stress reduction
,”
J. Rheol.
54
(
6
),
1207
1218
(
2010
).
113.
A. U.
Oza
and
D. C.
Venerus
, “
The dynamics of parallel-plate and cone–plate flows
,”
Phys. Fluids
33
(
2
),
023102
(
2021
).
114.
T. F.
Lamer
,
B. R.
Thomas
,
D. J.
Curtis
,
N.
Badiei
,
P. R.
Williams
, and
K.
Hawkins
, “
The application of large amplitude oscillatory stress in a study of fully formed fibrin clots
,”
Phys. Fluids
29
(
12
),
121606
(
2017
).
115.
J.-E.
Bae
and
K. S.
Cho
, “
Analytical studies on the LAOS behaviors of some popularly used viscoelastic constitutive equations with a new insight on stress decomposition of normal stresses
,”
Phys. Fluids
29
(
9
),
093103
(
2017
).
116.
M. A.
Kanso
,
L.
Jbara
,
A. J.
Giacomin
,
C.
Saengow
, and
P. H.
Gilbert
, “
Order in polymeric liquids under oscillatory shear flow
,”
Phys. Fluids
31
(
3
),
033103
(
2019
).
117.
J.-W.
Song
,
M.-C.
Ma
, and
L.-W.
Fan
, “
Understanding the temperature dependence of contact angles of water on a smooth hydrophobic surface under pressurized conditions: An experimental study
,”
Langmuir
36
(
32
),
9586
9595
(
2020
).
118.
K.
Khechiba
,
M.
Mamou
,
M.
Hachemi
,
N.
Delenda
, and
R.
Rebhi
, “
Effect of Carreau–Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid
,”
Phys. Fluids
29
(
6
),
063101
(
2017
).
119.
H. E.
Park
,
J.
Dealy
, and
H.
Münstedt
, “
Influence of long-chain branching on time-pressure and time-temperature shift factors for polystyrene and polyethylene
,”
Rheol. Acta
46
(
1
),
153
159
(
2006
).
120.
M.
Gahleitner
, “
Melt rheology of polyolefins
,”
Prog. Polym. Sci.
26
(
6
),
895
944
(
2001
).
121.
N.
Topic
 et al, “
Effect of particle size ratio on shear-induced onset of particle motion at low particle Reynolds numbers: From high shielding to roughness
,”
Phys. Fluids
31
(
6
),
063305
(
2019
).
122.
L.
Lombardi
and
D.
Tammaro
, “
Effect of polymer swell in extrusion foaming of low-density polyethylene
,”
Phys. Fluids
33
(
3
),
033104
(
2021
).
123.
H.
Münstedt
, “
New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample
,”
J. Rheol.
23
(
4
),
421
436
(
1979
).
124.
J.
Meissner
and
J.
Hostettler
, “
A new elongational rheometer for polymer melts and other highly viscoelastic liquids
,”
Rheol. Acta
33
(
1
),
1
21
(
1994
).
125.
B.
Li
,
W.
Yu
,
X.
Cao
, and
Q.
Chen
, “
Horizontal extensional rheometry (HER) for low viscosity polymer melts
,”
J. Rheol.
64
(
1
),
177
190
(
2020
).
126.
A.
Vázquez-Quesada
and
M.
Ellero
, “
SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix
,”
Phys. Fluids
29
(
12
),
121609
(
2017
).
127.
S.
Das
,
S.
Mandal
,
S. K.
Som
, and
S.
Chakraborty
, “
Effect of interfacial slip on the deformation of a viscoelastic drop in uniaxial extensional flow field
,”
Phys. Fluids
29
(
3
),
032105
(
2017
).
128.
E. S.
Kim
,
H. E.
Park
, and
P. C.
Lee
, “
In situ shrinking fibers enhance strain hardening and foamability of linear polymers
,”
Polymer
136
,
1
5
(
2018
).
129.
M. S.
Huda
,
L. T.
Drzal
,
A. K.
Mohanty
, and
M.
Misra
, “
The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites
,”
Composites, Part B
38
(
3
),
367
379
(
2007
).
130.
C. G.
Skamniotis
,
M.
Elliott
, and
M. N.
Charalambides
, “
On modeling the large strain fracture behaviour of soft viscous foods
,”
Phys. Fluids
29
(
12
),
121610
(
2017
).
131.
N. O.
Rojas
, “
Air bubble propagation mechanism in a rectangular elasto-rigid channel
,”
Phys. Fluids
33
(
3
),
032103
(
2021
).
132.
S. N.
Leung
,
C. B.
Park
,
D.
Xu
,
H.
Li
, and
R. G.
Fenton
, “
Computer simulation of bubble-growth phenomena in foaming
,”
Ind. Eng. Chem. Res.
45
(
23
),
7823
7831
(
2006
).
133.
P.
Buahom
and
S.
Areerat
, “
The estimation of cell density in isotropic microcellular polymeric foams using the critical bubble lattice
,”
J. Cell. Plast.
47
(
2
),
133
152
(
2011
).
134.
M.
Nofar
and
C. B.
Park
, “
Heterogeneous cell nucleation mechanisms in polylactide foaming
,” in
Biofoams
, edited by
S.
Iannace
and
C. B.
Park
(
CRC Press
,
Boca Raton
,
2015
).
135.
A.
Ameli
,
D.
Jahani
,
M.
Nofar
,
P. U.
Jung
, and
C. B.
Park
, “
Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties
,”
Compos. Sci. Technol.
90
,
88
95
(
2014
).
136.
A.
Ameli
,
M.
Nofar
,
D.
Jahani
,
G.
Rizvi
, and
C. B.
Park
, “
Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors
,”
Chem. Eng. J.
262
,
78
87
(
2015
).
137.
H. E.
Naguib
,
C. B.
Park
, and
P. C.
Lee
, “
Effect of talc content on the volume expansion ratio of extruded PP foams
,”
J. Cell. Plast.
39
(
6
),
499
511
(
2003
).
138.
S. M.
Ovais
,
K. A.
Kemenov
, and
R. S.
Miller
, “
Direct numerical simulation of supercritical oxy-methane mixing layers with CO2 substituted counterparts
,”
Phys. Fluids
33
(
3
),
035115
(
2021
).
139.
M.
Nofar
,
A.
Ameli
, and
C. B.
Park
, “
A novel technology to manufacture biodegradable polylactide bead foam products
,”
Mater. Des.
83
,
413
421
(
2015
).
140.
L. F.
McInerney
,
N.
Kao
, and
S. N.
Bhattacharya
, “
Melt strength and extensibility of talc-filled polypropylene
,”
Polym. Eng. Sci.
43
(
12
),
1821
1829
(
2003
).
141.
W.
Kaewmesri
,
P. C.
Lee
,
C. B.
Park
, and
J.
Pumchusak
, “
Effects of CO2 and talc contents on foaming behavior of recyclable high-melt-strength PP
,”
J. Cell. Plast.
42
(
5
),
405
428
(
2006
).
142.
D.
Jahani
,
A.
Ameli
,
P. U.
Jung
,
M. R.
Barzegari
,
C. B.
Park
, and
H.
Naguib
, “
Open-cell cavity-integrated injection-molded acoustic polypropylene foams
,”
Mater. Des.
53
,
20
28
(
2014
).
143.
D.
Kohlhoff
and
M.
Ohshima
, “
Open cell microcellular foams of polylactic acid (PLA)-based blends with semi-interpenetrating polymer networks
,”
Macromol. Mater. Eng.
296
(
8
),
770
777
(
2011
).
144.
H.
Li
 et al, “
Evaluation of oil production potential in fractured porous media
,”
Phys. Fluids
31
(
5
),
052104
(
2019
).
145.
B.
Li
,
G.
Zhao
,
G.
Wang
,
L.
Zhang
,
J.
Gong
, and
Z.
Shi
, “
Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption
,”
Sep. Purif. Technol.
257
,
117949
(
2021
).
146.
O.
Maalal
,
M.
Prat
, and
D.
Lasseux
, “
Pore network model of drying with Kelvin effect
,”
Phys. Fluids
33
(
2
),
027103
(
2021
).
147.
C.
McIlroy
, “
A fundamental rule: Determining the importance of flow prior to polymer crystallization
,”
Phys. Fluids
31
(
11
),
113103
(
2019
).
148.
Y.
Lin
,
Y.
Wang
,
Z.
Weng
,
D.
Pan
, and
J.
Chen
, “
Air bubbles play a role in shear thinning of non-colloidal suspensions
,”
Phys. Fluids
33
(
1
),
011702
(
2021
).
149.
M.
Agrawal
,
A.
Gaurav
,
B.
Karri
, and
K. C.
Sahu
, “
An experimental study of two identical air bubbles rising side-by-side in water
,”
Phys. Fluids
33
(
3
),
032106
(
2021
).
150.
S.
Li
,
A. M.
Zhang
,
R.
Han
, and
Y. Q.
Liu
, “
Experimental and numerical study on bubble-sphere interaction near a rigid wall
,”
Phys. Fluids
29
(
9
),
092102
(
2017
).
151.
G.
Charalampous
and
Y.
Hardalupas
, “
Collisions of droplets on spherical particles
,”
Phys. Fluids
29
(
10
),
103305
(
2017
).
152.
S. A.
Banitabaei
and
A.
Amirfazli
, “
Droplet impact onto a solid sphere: Effect of wettability and impact velocity
,”
Phys. Fluids
29
(
6
),
062111
(
2017
).
153.
S.
Chen
and
V.
Bertola
, “
Drop impact on spherical soft surfaces
,”
Phys. Fluids
29
(
8
),
082106
(
2017
).
154.
L. T.
Liu
,
X. L.
Yao
,
A. M.
Zhang
, and
Y. Y.
Chen
, “
Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method
,”
Phys. Fluids
29
(
1
),
012105
(
2017
).
155.
P.
Koukouvinis
,
M.
Gavaises
,
O.
Supponen
, and
M.
Farhat
, “
Simulation of bubble expansion and collapse in the vicinity of a free surface
,”
Phys. Fluids
28
(
5
),
052103
(
2016
).
156.
V.
Kumar
,
M.
Kumawat
,
A.
Srivastava
, and
S.
Karagadde
, “
Mechanism of flow reversal during solidification of an anomalous liquid
,”
Phys. Fluids
29
(
12
),
123603
(
2017
).
157.
F.
Duan
,
L.
Zhao
,
X.
Chen
, and
Q.
Zhou
, “
Fluid–particle drag and particle–particle drag in low-Reynolds-number bidisperse gas–solid suspensions
,”
Phys. Fluids
32
(
11
),
113311
(
2020
).
158.
P. M.
Vinze
,
A.
Choudhary
, and
S.
Pushpavanam
, “
Motion of an active particle in a linear concentration gradient
,”
Phys. Fluids
33
(
3
),
032011
(
2021
).
159.
R. E.
Swaney
and
R. B.
Bird
, “
Transport phenomena and thermodynamics: Multicomponent mixtures
,”
Phys. Fluids
31
(
2
),
021202
(
2019
).
160.
K.
Pandey
,
D.
Prabhakaran
, and
S.
Basu
, “
Review of transport processes and particle self-assembly in acoustically levitated nanofluid droplets
,”
Phys. Fluids
31
(
11
),
112102
(
2019
).
161.
S. H.
Mahmood
,
A.
Ameli
,
N.
Hossieny
, and
C. B.
Park
, “
The interfacial tension of molten polylactide in supercritical carbon dioxide
,”
J. Chem. Thermodyn.
75
,
69
76
(
2014
).
162.
F. Y.
Leong
and
D.-V.
Le
, “
Droplet dynamics on viscoelastic soft substrate: Toward coalescence control
,”
Phys. Fluids
32
(
6
),
062102
(
2020
).
You do not currently have access to this content.