The lattice Boltzmann method is used to study the double-diffusive convection caused by the simultaneous effect of the temperature gradient and concentration gradient of the dielectric liquid in a rectangular cavity in the case of unipolar injection of ions. Considering that the physical model in this article is a complex dynamic system, we first conducted a linear stability analysis and obtained a neutral stability curve. Then we made a series of simulations to determine the influence of different dimensionless parameters on the movement of dielectric liquids and the distribution of charge density, temperature field, and concentration field. The variation range of the parameters is as follows: thermal Rayleigh number (1000Ra20000), electric Rayleigh number (100T800), Lewis number (1.0Le50.0), and buoyancy ratio (2Nc0.5). The results show that the increase in electric Rayleigh number and thermal Rayleigh number will enhance the intensity of heat and mass transfer. Compared with pure electric convection, the existence of temperature field and concentration field have increased the instability of the dielectric fluid flow. When the Lewis number increases, the average Nusselt number will decrease but the average Sherwood number will increase. In addition, we noticed that the heat and mass transfer intensities have increased with the increase of the buoyancy ratio. When the buoyancy rate gradually increases from –2.0, we observe a bifurcation structure, and as the electric Rayleigh number increases, the critical value Ncc that causes convection will decrease.

1.
A.
Castellanos
,
Electrohydrodynamics
(
Springer
,
1998
).
2.
P.
Atten
,
F. M. J.
McCluskey
, and
A. T.
Pérez
, “
Electroconvection and its effect on heat transfer
,”
IEEE Trans. Electr. Insul.
23
,
659
(
1988
).
3.
F. M. J.
McCluskey
,
P.
Atten
, and
A. T.
Pérez
, “
Heat transfer enhancement by electroconvection resulting from an injected space charge between parallel plates
,”
Int. J. Heat Mass Transfer
34
,
2237
(
1991
).
4.
D.
Koulova
,
P.
Traoré
, and
H.
Romat
, “
Numerical study of the heat transfer and electro-thermo-convective flow patterns in dielectric liquid layer subjected to unipolar injection
,”
J. Electrost.
71
,
970
975
(
2013
).
5.
P.
Traoré
,
A. T.
Pérez
,
D.
Koulova
, and
H.
Romat
, “
Numerical modelling of finite-amplitude electro-thermo-convection in a dielectric liquid layer subjected to both unipolar injection and temperature gradient
,”
J. Fluid Mech.
658
,
279
(
2010
).
6.
J.
Wu
,
P.
Traoré
,
C.
Louste
,
A. T.
Pérez
, and
P. A.
Vázquez
, “
Numerical evaluation of heat transfer enhancement due to annular electroconvection induced by injection in a dielectric liquid
,”
IEEE Trans. Dielectr. Electr. Insul.
23
,
614
(
2016
).
7.
T. F.
Li
,
K.
Luo
, and
H. L.
Yi
, “
Effect of unipolar charge injection direction on the onset of Rayleigh-Bénard convection: A lattice Boltzmann study
,”
Int. Commun. Heat Mass Transfer
112
,
104496
(
2020
).
8.
J.
Wu
,
P.
Traoré
,
M.
Zhang
,
A. T.
Pérez
, and
P. A.
Vázquez
, “
Charge injection enhanced natural convection heat transfer in horizontal concentric annuli filled with a dielectric liquid
,”
Int. J. Heat Mass Transfer
92
,
139
(
2016
).
9.
K.
Luo
,
J.
Wu
,
H. L.
Yi
, and
H. P.
Tan
, “
Lattice Boltzmann modelling of electro-thermo-convection in a planar layer of dielectric liquid subjected to unipolar injection and thermal gradient
,”
Int. J. Heat Mass Transfer
103
,
832
(
2016
).
10.
H. E.
Huppert
and
R. S. J.
Sparks
, “
Double-diffusive convection due to crystallization in magmas
,”
Annu. Rev. Earth Planet. Sci.
12
,
11
(
1984
).
11.
G. V.
Kuznetsov
and
M. A.
Sheremet
, “
A numerical simulation of double-diffusive conjugate natural convection in an enclosure
,”
Int. J. Therm. Sci.
50
,
1878
(
2011
).
12.
J.
Wang
,
M.
Yang
, and
Y. W.
Zhang
, “
Onset of double-diffusive convection in horizontal cavity with Soret and Dufour effects
,”
Int. J. Heat Mass Transfer
78
,
1023
(
2014
).
13.
T. R.
Mahapatra
,
D.
Pal
, and
S.
Mondal
, “
Effects of buoyancy ratio on double-diffusive natural convection in a lid-driven cavity
,”
Int. J. Heat Mass Transfer
57
,
771
(
2013
).
14.
Q. L.
Ren
and
C. L.
Chan
, “
Numerical study of double-diffusive convection in a vertical cavity with Soret and Dufour effects by lattice Boltzmann method on GPU
,”
Int. J. Heat Mass Transfer
93
,
538
(
2016
).
15.
P. G.
Siddheshwar
,
B. R.
Revathi
, and
C.
Kanchana
, “
Effect of gravity modulation on linear, weakly-nonlinear and local-nonlinear stability analyses of stationary double-diffusive convection in a dielectric liquid
,”
Meccanica
55
,
2003
(
2020
).
16.
I.
Sezai
and
A. A.
Mohamad
, “
Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients
,”
Phys. Fluids
12
,
2210
(
2000
).
17.
T.
Nishimura
,
M.
Wakamatsu
, and
A. M.
Morega
, “
Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients
,”
Int. J. Heat Mass Transfer
41
,
1601
(
1998
).
18.
Q.
Li
,
K. H.
Luo
,
Q. J.
Kang
,
Y. L.
He
, and
Q.
Liu
, “
Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
,”
Prog. Energy Combust. Sci.
52
,
62
(
2016
).
19.
M. A.
Gallivan
,
D. R.
Noble
,
J. G.
Georgiadis
, and
R. O.
Buckius
, “
An evaluation of the bounceback boundary condition for lattice Boltzmann simulations
,”
Int. J. Numer. Methods Fluids
25
,
249
(
1997
).
20.
Z. L.
Guo
,
C. G.
Zheng
, and
B. C.
Shi
, “
An extrapolation method for boundary conditions in lattice Boltzmann method
,”
Phys. Fluids
14
,
2007
(
2002
).
21.
L.
Jahanshaloo
,
N. A. C.
Sidik
,
A.
Fazeli
, and
H. A.
Mahmoud Pesaran
, “
An overview of boundary implementation in lattice Boltzmann method for computational heat and mass transfer
,”
Int. Commun. Heat Mass Transfer
78
,
1
(
2016
).
22.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
23.
L.
Wang
,
Z. C.
Wei
,
T. F.
Li
,
Z. H.
Chai
, and
B. C.
Shi
, “
A lattice Boltzmann modelling of electrohydrodynamic conduction phenomenon in dielectric liquids
,”
Appl. Math. Model.
95
,
361
(
2021
).
24.
X. Y.
He
,
S. Y.
Chen
, and
G. D.
Doolen
, “
A novel thermal model for the lattice Boltzmann method in incompressible limit
,”
J. Comput. Phys.
146
,
282
(
1998
).
25.
Y.
Peng
,
C.
Shu
, and
Y. T.
Chew
, “
Simplified thermal lattice Boltzmann model for incompressible thermal flows
,”
Phys. Rev. E
68
,
026701
(
2003
).
26.
P.
Atten
, “
Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids
,”
IEEE Trans. Dielectr. Electr. Insul.
3
,
1
(
1996
).
27.
J. L.
Lara
,
F.
Pontiga
, and
A.
Castellanos
, “
Stability analysis of a Taylor-Couette flow of insulating fluid subjected to radial unipolar injection of charge
,”
Phys. Fluids
10
,
3088
(
1998
).
28.
A. T.
Pérez
and
A.
Castellanos
, “
Role of charge diffusion in finite-amplitude electroconvection
,”
Phys. Rev. A
40
,
5844
(
1989
).
29.
R.
Tobazeon
, “
Electrohydrodynamic instabilities and electroconvection in the transient and AC regime of unipolar injection in insulating liquids: A review
,”
J. Electrost.
15
,
359
(
1984
).
30.
Y. H.
Qian
,
D.
d’Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
,
479
(
1992
).
31.
Z. L.
Guo
,
B. C.
Shi
, and
N. C.
Wang
, “
Lattice BGK model for incompressible Navier-Stokes equation
,”
J. Comput. Phys.
165
,
288
(
2000
).
32.
Z. L.
Guo
,
C. G.
Zheng
, and
B. C.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
33.
Z. L.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and Its Applications in Engineering
(
World Scientific
,
2013
).
34.
L.
Wang
,
B. C.
Shi
,
Z. H.
Chai
, and
X. G.
Yang
, “
Regularized lattice Boltzmann model for double-diffusive convection in vertical enclosures with heating and salting from below
,”
Appl. Therm. Eng.
103
,
365
(
2016
).
35.
M.
Wang
and
Q. J.
Kang
, “
Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods
,”
J. Comput. Phys.
229
,
728
(
2010
).
36.
M.
Wang
,
J. K.
Wang
, and
S. Y.
Chen
, “
Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods
,”
J. Comput. Phys.
226
,
836
(
2007
).
37.
J. F.
Zhang
, “
Lattice Boltzmann method for microfluidics: Models and applications
,”
Microfluid. Nanofluid.
10
,
1
28
(
2011
).
38.
K.
Luo
,
J.
Wu
,
H. L.
Yi
, and
H. P.
Tan
, “
Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids
,”
Phys. Rev. E
93
,
023309
(
2016
).
39.
C.
Beghein
,
F.
Haghighat
, and
F.
Allard
, “
Numerical study of double-diffusive natural convection in a square cavity
,”
Int. J. Heat Mass Transfer
35
,
833
(
1992
).
40.
R.
Chicón
,
A.
Castellanos
, and
E.
Martin
, “
Numerical modelling of Coulomb-driven convection in insulating liquids
,”
J. Fluid Mech.
344
,
43
(
1997
).
41.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon Press
,
Oxford
,
1961
).
42.
J. E.
Gatica
,
H. J.
Viljoen
, and
V.
Hlavacek
, “
Interaction between chemical reaction and natural convection in porous media
,”
Chem. Eng. Sci.
44
,
1853
1870
(
1989
).
43.
P.
Traoré
,
J.
Wu
, and
A. T.
Pérez
, “
Direct numerical simulation of the subcritical electroconvective instability in a dielectric liquid subjected to strong or weak unipolar injection
,”
Eur. J. Mech. B-Fluid
59
,
25
36
(
2016
).
44.
Z. G.
Su
,
Y. M.
Zhang
,
K.
Luo
, and
H. L.
Yi
, “
Instability of electroconvection in viscoelastic fluids subjected to unipolar injection
,”
Phys. Fluids
32
,
104102
(
2020
).
45.
J.
Wu
,
P.
Traoré
, and
A. T.
Pérez
, “
Numerical analysis of the subcritical feature of electro-thermo-convection in a plane layer of dielectric liquid
,”
Physica D
311–312
,
45
57
(
2015
).
46.
P. A.
Vazquez
and
A.
Castellanos
, “
Numerical simulation of EHD flows using discontinuous Galerkin finite element methods
,”
Comput. Fluids
84
,
270
278
(
2013
).
47.
A.
Rodriguez-Luis
,
A.
Castellanos
, and
A. T.
Richardson
, “
Stationary instabilities in a dielectric liquid layer subjected to an arbitrary unipolar injection and an adverse thermal gradient
,”
J. Phys. D: Appl. Phys.
19
,
2115
(
1986
).
48.
N.
Felici
and
J. C.
Lacroix
, “
Electroconvection in insulating liquids with special reference to uni-and bi-polar injection: A review of the research work at the CNRS Laboratory for Electrostatics, Grenoble 1969–1976
,”
J. Electrost.
5
,
135
(
1978
).
49.
L.
Wang
,
Z. H.
Chai
, and
B. C.
Shi
, “
Regularized lattice Boltzmann simulation of double-diffusive convection of power-law nanofluids in rectangular enclosures
,”
Int. J. Heat Mass Transfer
102
,
381
(
2016
).
50.
K.
Luo
,
J.
Wu
,
H. L.
Yi
, and
H. P.
Tan
, “
Numerical investigation of heat transfer enhancement in electro-thermo-convection in a square enclosure with an inner circular cylinder
,”
Int. J. Heat Mass Transfer
113
,
1070
(
2017
).
You do not currently have access to this content.