In this paper, we study the transformation of surface envelope solitons traveling over a bottom step in water of a finite depth. Using the transformation coefficients earlier derived in the linear approximation, we find the parameters of transmitted pulses and subsequent evolution of the pulses in the course of propagation. Relying on the weakly nonlinear theory, the analytic formulas are derived which describe the maximum attainable wave amplitude in the neighborhood of the step and in the far zone. Solitary waves may be greatly amplified (within the weakly nonlinear theory formally, even without a limit) when propagating from relatively shallow water to the deeper domain due to the constructive interference between the newly emerging envelope solitons and the residual quasi-linear waves. The theoretical results are in good agreement with the data of direct numerical modeling of soliton transformation. In particular, more than double wave amplification is demonstrated in the performed simulations.

1.
Ablowitz
,
M.
, and
Segur
,
H.
, “
On the evolution of packets of water waves
,”
J. Fluid Mech.
92
,
691
715
(
1979
).
2.
Agafontsev
,
D.
, “
Bifurcations and the stability of the surface envelope solitons for a finite-depth fluid
,”
JETP Lett.
87
,
195
199
(
2008
).
3.
Akhmediev
,
N. N.
, and
Mitzkevich
,
N. V.
, “
Extremely high degree of N-soliton pulse compression in an optical fiber
,”
IEEE J. Quantum Electron.
27
,
849
857
(
1991
).
4.
Chabchoub
,
A.
,
Mozumi
,
K.
,
Hoffmann
,
N.
,
Babanin
,
A. V.
,
Toffoli
,
A.
,
Steer
,
J. N.
,
van den Bremer
,
T. S.
,
Akhmediev
,
N.
,
Onorato
,
M.
, and
Waseda
,
T.
, “
Directional soliton and breather beams
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
9759
9763
(
2019
).
5.
Djordjevic
,
V. D.
, and
Redekopp
,
L. G.
, “
On the development of packets of surface gravity waves moving over an uneven bottom
,”
J. Appl. Math. Phys.
29
,
950
962
(
1978
).
6.
Dommermuth
,
D. G.
, and
Yue
,
D. K.
, “
A high-order spectral method for the study of nonlinear gravity waves
,”
J. Fluid Mech.
184
,
267
288
(
1987
).
7.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touzé
,
D.
, and
Ferrant
,
P.
, “
HOS-ocean: Open-source solver for nonlinear waves in open ocean based on high-order spectral method
,”
Comput. Phys. Commun.
203
,
245
254
(
2016
).
8.
Giniyatullin
,
A. R.
,
Kurkin
,
A. A.
,
Semin
,
S. V.
, and
Stepanyants
,
Y. A.
, “
Transformation of narrowband wavetrains of surface gravity waves passing over a bottom step
,”
Math. Modell. Nat. Phenom.
9
(
5
),
73
82
(
2014
).
9.
Gouin
,
M.
,
Ducrozet
,
G.
, and
Ferrant
,
P.
, “
Development and validation of a non-linear spectral model for water waves over variable depth
,”
Eur. J. Mech.-B/Fluids
57
,
115
128
(
2016
).
10.
Grimshaw
,
R. H. J.
, and
Annenkov
,
S. Y.
, “
Water wave packets over variable depth
,”
Stud. Appl. Math.
126
,
409
427
(
2011
).
11.
Kharif
,
C.
,
Pelinovsky
,
E.
, and
Slunyaev
,
A.
,
Rogue Waves in the Ocean
(
Springer-Verlag
,
Berlin, Heidelberg
,
2009
).
12.
Kurkin
,
A. A.
,
Semin
,
S. V.
, and
Stepanyants
,
Y. A.
, “
Transformation of surface waves over a bottom step
,”
Izv., Atmos. Oceanic Phys.
51
(
2
),
214
223
(
2015a
).
13.
Kurkin
,
A. A.
,
Semin
,
S. V.
, and
Stepanyants
,
Y. A.
, “
Transformation of surface and internal waves on a bottom step
,”
Fundam. Appl. Hydrophys. (in Russ.)
8
(
3
),
3
19
(
2015b
).
14.
Lamb
,
H.
,
Hydrodynamics
(
Cambridge University Press
,
Cambridge
,
1933
).
15.
Li
,
Y.
,
Adcock
,
T. A. A.
,
Zheng
,
Y.
,
Lin
,
Z.
, and
van den Bremer
,
T. S.
, “
Surface wavepackets subject to an abrupt depth change. Part 1. Second-order theory
,”
J. Fluid Mech.
915
,
A71
(
2021a
).
16.
Li
,
Y.
,
Draycott
,
S.
,
Adcock
,
T.
, and
van den Bremer
,
T.
, “
Surface wavepackets subject to an abrupt depth change. Part 2. Experimental analysis
,”
J. Fluid Mech.
915
,
A72
(
2021b
).
17.
Losada
,
M. A.
,
Vidal
,
C.
, and
Medina
,
R.
, “
Experimental study of the evolution of a solitary wave at an abrupt junction
,”
J. Geophys. Res.
94
,
14557
14566
, (
1989
).
18.
Mei
,
C. C.
,
Stiassnie
,
M.
, and
Yue
,
D. K.-P.
,
Theory and Applications of Ocean Surface Waves. Part 2: Nonlinear Aspects
(
World Scientific
,
2005
).
19.
Miles
,
J. W.
, “
Surface-wave scattering matrix for a shelf
,”
J. Fluid Mech.
28
,
755
767
(
1967
).
20.
Onorato
,
M.
,
Proment
,
D.
, and
Toffoli
,
A.
, “
Triggering rogue waves in opposing currents
,”
Phys. Rev. Lett.
107
,
184502
(
2011
).
21.
Peregrine
,
D. H.
, “
Water waves, nonlinear Schrodinger equations and their solutions
,”
J. Aust. Math. Soc. Ser. B
25
,
16
43
(
1983
).
22.
Satsuma
,
J.
, and
Yajima
,
N.
, “
Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media
,”
Suppl. Prog. Theor. Phys.
55
,
284
306
(
1974
).
23.
Seabra-Santos
,
F. J.
,
Renouard
,
D. P.
, and
Temperville
,
A. M.
, “
Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle
,”
J. Fluid Mech.
176
,
117
134
(
1987
).
24.
Sergeeva
,
A.
,
Pelinovsky
,
E.
, and
Talipova
,
T.
, “
Nonlinear random wave field in shallow water: Variable Korteweg-de Vries framework
,”
Nat. Hazards Earth Syst. Sci.
11
,
323
330
(
2011
).
25.
Shrira
,
V. I.
, and
Slunyaev
,
A. V.
, “
Nonlinear dynamics of trapped waves on jet currents and rogue waves
,”
Phys. Rev. E.
89
,
041002
(
2014
).
26.
Slunyaev
,
A.
, “
Nonlinear analysis and simulations of measured freak wave time series
,”
Eur. J. Mech.-B/Fluids
25
,
621
635
(
2006
).
27.
Slunyaev
,
A.
, “
On the optimal focusing of solitons and breathers in long wave models
,”
Stud. Appl. Math.
142
,
385
413
(
2019
).
28.
Slunyaev
,
A. V.
, “
A high-order nonlinear envelope equation for gravity waves in finite-depth water
,”
J. Exp. Theor. Phys.
101
,
926
941
(
2005
).
29.
Slunyaev
,
A. V.
, “
Persistence of hydrodynamic envelope solitons: Detection and rogue wave occurrence
,”
Phys. Fluids
33
,
036606
(
2021
).
30.
Slunyaev
,
A.
,
Clauss
,
G. F.
,
Klein
,
M.
, and
Onorato
,
M.
, “
Simulations and experiments of short intense envelope solitons of surface water waves
,”
Phys. Fluids
25
,
067105
(
2013
).
31.
Slunyaev
,
A.
,
Kharif
,
C.
,
Pelinovsky
,
E.
, and
Talipova
,
T.
, “
Nonlinear wave focusing on water of finite depth
,”
Phys. D
173
,
77
96
(
2002
).
32.
Slunyaev
,
A.
,
Klein
,
M.
, and
Clauss
,
G. F.
, “
Laboratory and numerical study of intense envelope solitons of water waves: Generation, reflection from a wall and collisions
,”
Phys. Fluids
29
,
047103
(
2017
).
33.
Slunyaev
,
A.
,
Sergeeva
,
A.
, and
Pelinovsky
,
E.
, “
Wave amplification in the framework of forced nonlinear Schrödinger equation: The rogue wave context
,”
Phys. D
303
,
18
27
(
2015
).
34.
Slunyaev
,
A. V.
, and
Pelinovsky
,
E. N.
, “
The role of multiple soliton interactions in generation of rogue waves: The mKdV framework
,”
Phys. Rev. Lett.
117
,
214501
(
2016
).
35.
Sun
,
Y.-H.
, “
Soliton synchronization in the focusing nonlinear Schrödinger equation
,”
Phys. Rev. E
93
,
052222
(
2016
).
36.
Trulsen
,
K.
,
Raustøl
,
A.
,
Jorde
,
S.
, and
Rye
,
L.
, “
Extreme wave statistics of long-crested irregular waves over a shoal
,”
J. Fluid Mech.
882
,
R2
(
2020
).
37.
Trulsen
,
K.
,
Zeng
,
H.
, and
Gramstad
,
O.
, “
Laboratory evidence of freak waves provoked by non-uniform bathymetry
,”
Phys. Fluids
24
,
097101
(
2012
).
38.
Viotti
,
C.
,
Dutykh
,
D.
,
Dudley
,
J. M.
, and
Dias
,
F.
, “
Emergence of coherent wave groups in deep-water random sea
,”
Phys. Rev. E
87
,
063001
(
2013
).
39.
Wang
,
A.
,
Ludu
,
A.
,
Zong
,
Z.
,
Zou
,
L.
, and
Pei
,
Y.
, “
Experimental study of breathers and rogue waves generated by random waves over non-uniform bathymetry
,”
Phys. Fluids
32
,
087109
(
2020
).
40.
Wang
,
L.
,
Yang
,
C.
,
Wang
,
J.
, and
He
,
J.
, “
The height of an nth-order fundamental rogue wave for the nonlinear Schrödinger equation
,”
Phys. Lett. A
381
,
1714
1718
(
2017
).
41.
West
,
B. J.
,
Brueckner
,
K. A.
,
Janda
,
R. S.
,
Milder
,
D. M.
, and
Milton
,
R. L.
, “
A new numerical method for surface hydrodynamics
,”
J. Geophys. Res.
92
,
11803
11824
, (
1987
).
42.
Zakharov
,
V. E.
, and
Ostrovsky
,
L. A.
, “
Modulation instability: The beginning
,”
Phys. D
238
,
540
548
(
2009
).
43.
Zakharov
,
V. E.
, and
Rubenchik
,
A. M.
, “
Instability of waveguides and solitons in nonlinear media
,”
Sov. Phys. - JETP
38
,
494
500
(
1974
).
44.
Zeng
,
H.
, and
Trulsen
,
K.
, “
Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom
,”
Nat. Hazards Earth Syst. Sci.
12
,
631
638
(
2012
).
45.
Zhang
,
J.
, and
Benoit
,
M.
, “
Wave–bottom interaction and extreme wave statistics due to shoaling and de-shoaling of irregular long-crested wave trains over steep seabed changes
,”
J. Fluid Mech.
912
,
A28
(
2021
).
46.
Zheng
,
Y. K.
,
Lin
,
Z. L.
,
Li
,
Y.
,
Adcock
,
T. A. A.
,
Li
,
Y.
, and
van den Bremer
,
T. S.
, “
Fully nonlinear simulations of extreme waves provoked by strong depth transitions: The effect of slope
,”
Phys. Rev. Fluids
5
,
064804
(
2020
).
You do not currently have access to this content.