This article presents a detailed investigation of the three-dimensional flow field produced by a small centrifugal fan used for cooling of electronic components, for instance, in the automotive industry. A particle image velocimetry (PIV) system captured numerous cross sections of the fan jet for analysis of velocity distribution and jet development. General parameters, such as the spreading rate, and flow specifics, such as the full width at half maximum contours in planes parallel to the fan outlet and the jet's rotation rate, were thus evaluated. In addition, constant temperature anemometry enabled a thorough investigation of the flow field at the fan's outflow port. Hot-wire measurements complement the PIV results by providing the power spectral density of the turbulent kinetic energy at several locations. Our results demonstrate that the cross-flow profile at the fan outlet consists of two counter-rotating vortices. This leads to a jet with a nearly elliptical, rotating cross section, which does not propagate in a direction perpendicular to the outlet plane. Several aspects of these distinctive flow features are evaluated and presented to provide both fluid mechanics and heat transfer engineers with (i) data on the air jet produced by a small centrifugal fan and (ii) reference data for computational fluid dynamics simulations. Despite complex flow development in the near field of the jet and the nonaxisymmetric jet contour in the intermediate field, our results are in good agreement with published data on axisymmetric jets in terms of spreading rate and the development of turbulence spectra observed in the intermediate field.

1.
R.
Grimes
,
E. J.
Walsh
, and
P. A.
Walsh
, “
Active cooling of a mobile phone handset
,”
Appl. Therm. Eng.
30
,
2363
2369
(
2010
).
2.
W. L.
Staats
and
J. G.
Brisson
, “
Active heat transfer enhancement in air cooled heat sinks using integrated centrifugal fans
,”
Int. J. Heat Mass Transfer
82
,
189
205
(
2015
).
3.
G. M.
Carlomagno
and
A.
Ianiro
, “
Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review
,”
Exp. Therm. Fluid Sci.
58
,
15
35
(
2014
).
4.
A.
Bengoechea
,
R.
Antón
,
A.
Rivas
,
G. S.
Larraona
, and
J. C.
Ramos
, “
Compact model of a screen under fan-induced swirl conditions using a porous media approach
,”
Appl. Sci.
11
,
1999
(
2021
).
5.
J.
Stafford
and
C.
Xu
, “
Deposition of particle pollution in turbulent forced-air cooling
,”
Aerosol Sci. Technol.
55
,
486
500
(
2021
).
6.
J.
Hennissen
,
W.
Temmerman
,
J.
Berghmans
, and
K.
Allaert
, “
Modeling of axial fans for electronic equipment
,” in
Proceedings of EUROTHERM Seminar 45
, Thermal Management of Electronic Systems II, edited by
E.
Beyne
,
J. M.
Lasance
, and
J.
Berghmans
, 20–22 September 1995, Leuven, Belgium (
Springer Science + Business Media
,
1997
), pp.
309
318
.
7.
R.
Grimes
,
M.
Davies
,
J.
Punch
,
T.
Dalton
, and
R.
Cole
, “
Modeling electronic cooling axial fan flows
,”
J. Electron. Packag.
123
,
112
119
(
2001
).
8.
S. C.
Yen
and
F. K. T.
Lin
, “
Exit flow field and performance of axial flow fans
,”
J. Fluid Eng.
128
,
332
340
(
2006
).
9.
D.
Sui
,
S. S.
Wang
,
J. R.
Mao
,
T.
Kim
, and
T. J.
Lu
, “
Exit flow behavior of axial fan flows with/without impingement
,”
J. Fluid Eng.
131
,
061103
(
2009
).
10.
D.
Sui
,
T.
Kim
,
M. L.
Xu
, and
T. J.
Lu
, “
Flow and heat transfer characteristics of impinging axial fan flows on a uniformly heated flat plate
,”
Int. J. Transp. Phenom.
10
,
353
363
(
2008
); available at https://www.oldcitypublishing.com/journals/ijtp-home/ijtp-issue-contents/ijtp-volume-10-number-4-2008/ijtp-10-4-p-353-363/.
11.
J.
Stafford
,
E. J.
Walsh
, and
V.
Egan
, “
Local heat transfer performance and exit flow characteristics of a miniature axial fan
,”
Int. J. Heat Fluid Flow
31
,
952
(
2010
).
12.
J.
Stafford
,
E. J.
Walsh
,
V.
Egan
, and
R.
Grimes
, “
Flat plate heat transfer with impinging axial fan flows
,”
Int. J. Heat Mass Transfer
53
,
5629
5638
(
2010
).
13.
R.
Franzke
and
S.
Sebben
, “
Validation of different fan modelling techniques in computational fluid dynamics
,” in
Proceedings of the 21st Australasian Fluid Mechanics Conference
, Adelaide, Australia, 10–13 December (
2018
).
14.
H.
Nakamura
, “
Cooling fan model for thermal design of compact electronic equipment; modelling of swirl flow at the exit of axial-flow-fan
,”
Int. J. Electr. Electron. Eng. Telecommun.
7
,
21
25
(
2018
).
15.
S.-C.
Yen
and
J.-H.
Liu
, “
PIV measurements of exit flow field of centrifugal fans with conditional sampling
,”
J. Mar. Sci. Technol.
15
,
232
240
(
2007
); available at http://jmst.ntou.edu.tw/marine/15-3/232-240.pdf.
16.
B.
Eck
,
Fans: Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans
, 1st ed. (
Pergamon Press
,
1973
).
17.
J. F.
Gϋlich
,
Centrifugal Pumps
, 2nd ed. (
Springer-Verlag
,
Berlin, Heidelberg
,
2010
).
18.
A. M.
Sardar
, “
Centrifugal fans: Similarity, scaling laws, and fan performance
,” Ph.D. thesis (
State University of New York, Buffalo
,
2001
).
19.
E.-Y.
Kwon
,
K.-W.
Baek
,
N.-H.
Cho
,
H.-K.
Kim
, and
I.-J.
Jung
, “
Some aerodynamic aspects of centrifugal fan characteristics of an automotive hvac blower
,” in Proceedings of the
SAE 2001 World Congress
(
2001
).
20.
D.
Hofer
,
M.
Krieger
, and
M.
Kirchhofer
, “
High resolution 2.5D PIV measurements of the flow fields generated by small fans
,” in
Proceedings of the 18th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
2020
).
21.
J.
Heikkil
and
O.
Silvn
, “
A four-step camera calibration procedure with implicit image correction
,” in
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(
IEEE Computer Society
,
Washington, DC
,
1997
), pp.
1106
1112
.
22.
R. J.
Adrian
and
J.
Westerweel
,
Particle Image Velocimetry
, 1st ed. (
Cambridge University Press
,
2011
).
23.
H. H.
Bruun
,
Hot-Wire Anemometry: Principles and Signal Analysis
(
Oxford University Press
,
1995
).
24.
E. W.
Lemmon
,
R. T.
Jacobsen
,
S. G.
Penoncello
, and
D. G.
Friend
, “
Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa
,”
J. Phys. Chem. Ref. Data
29
,
331
385
(
2000
).
25.
E. W.
Lemmon
and
R. T.
Jacobsen
, “
Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air
,”
Int. J. Thermophys.
25
,
21
69
(
2004
).
26.
H.
Fellouah
and
A.
Pollard
, “
The velocity spectra and turbulence length scale distributions in the near to intermediate regions of a round free turbulent jet
,”
Phys. Fluids
21
,
115101
(
2009
).
27.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
, 2nd ed. (
Oxford University Press
,
Great Clarendon Street, Oxford OX2 6DP, United Kingdom
,
2015
).
28.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
29.
W. R.
Quinn
,
M.
Azad
, and
D.
Groulx
, “
Mean streamwise centerline velocity decay and entrainment in triangular and circular jets
,”
AIAA J.
51
,
70
79
(
2013
).
30.
W. R.
Quinn
and
J.
Militzer
, “
Experimental and numerical study of a turbulent free square jet
,”
Phys. Fluids
31
,
1017
1025
(
1988
).
31.
K.
Pearson
, “
LIII. On lines and planes of closest fit to systems of points in space
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
2
,
559
572
(
1901
).
32.
G. H.
Golub
and
C.
Reinsch
, “
Singular value decomposition and least squares solutions
,”
Numer. Math.
14
,
403
420
(
1970
).
33.
N. R.
Panchapakesan
and
J. L.
Lumley
, “
Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet
,”
J. Fluid Mech.
246
,
197
223
(
1993
).
34.
G.
Xu
and
R. A.
Antonia
, “
Effect of different initial conditions on a turbulent round free jet
,”
Exp. Fluids
33
,
677
683
(
2002
).
35.
W.
Rodi
, “
The prediction of free turbulent boundary layers by use of a two-equation model of turbulence
,” Ph.D. thesis (
University of London, Faculty of Engineering
,
1972
).
36.
H. J.
Hussein
,
S. P.
Capp
, and
W. K.
George
, “
Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet
,”
J. Fluid Mech.
258
,
31
75
(
1994
).
37.
I.
Wygnanski
and
H.
Fiedler
, “
Some measurements in the self-preserving jet
,”
J. Fluid Mech.
38
,
577
612
(
1969
).
38.
Y.
Tsuchiya
and
C.
Horikoshi
, “
On the spread of rectangular jets
,”
Exp. Fluids
4
,
197
204
(
1986
).
39.
M.
Xu
,
A.
Pollard
,
J.
Mi
,
F.
Secretain
, and
H.
Sadeghi
, “
Effects of Reynolds number on some properties of a turbulent jet from a long square pipe
,”
Phys. Fluids
25
,
035102
(
2013
).
40.
M.
Xu
,
J.
Zhang
,
P.
Li
, and
J.
Mi
, “
On two distinct Reynolds number regimes of a turbulent square jet
,”
Theor. Appl. Mech. Lett.
5
,
117
120
(
2015
).
41.
C.-M.
Ho
and
E.
Gutmark
, “
Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet
,”
J. Fluid Mech.
179
,
383
405
(
1987
).
42.
M. P.
du Plessis
,
R. L.
Wang
, and
R.
Kahawita
, “
Investigation of the near-region of a square jet
,”
J. Fluids Eng.
96
,
246
251
(
1974
).
43.
A.
Ghasemi
,
V.
Roussinova
, and
R.
Balachandar
, “
A study in the developing region of square jet
,”
J. Turbul.
14
,
1
24
(
2013
).
44.
E. J.
Gutmark
and
F. F.
Grinstein
, “
Flow control with noncircular jets
,”
Annu. Rev. Fluid Mech.
31
,
239
272
(
1999
).
45.
H.
Schlichting
and
K.
Gersten
,
Boundary Layer Theory
, 8th ed. (
Springer-Verlag
,
Berlin, Heidelberg, New York
,
2000
).
46.
P. D.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
47.
A. V.
Oppenheim
and
R. W.
Schafer
,
Discrete-Time Signal Processing
, 3rd ed. (
Pearson, Prentice Hall Press
,
Upper Saddle River, NJ
,
2009
).
48.
H.
Fellouah
,
C. G.
Ball
, and
A.
Pollard
, “
Reynolds number effects within the development region of a turbulent round free jet
,”
Int. J. Heat Mass Transfer
52
,
3943
3954
(
2009
).
49.
J. C.
Mi
and
R. A.
Antonia
, “
Effect of large-scale intermittency and mean shear on scaling-range exponents in a turbulent jet
,”
Phys. Rev. E
64
,
026302
(
2001
).
50.
J.
Mi
,
M.
Xu
, and
T.
Zhou
, “
Reynolds number influence on statistical behaviors of turbulence in a circular free jet
,”
Phys. Fluids
25
,
075101
(
2013
).
You do not currently have access to this content.