Strong rotation makes an underlying turbulent flow quasi-two-dimensional that leads to the upscale energy transfer. Recent numerical simulations show that under certain conditions, the energy is accumulated at the largest scales of the system, forming coherent vortex structures known as condensates. We analytically describe the interaction of a strong condensate with weak small-scale turbulent pulsations and obtain an equation that allows us to determine the radial velocity profile U(r) of a coherent vortex. When external rotation is fast, the velocity profiles of cyclones and anticyclones are identical to each other and are well described by the dependence U(r)±rln(R/r), where R is the transverse size of the vortex. As the external rotation decreases, this symmetry disappears: the maximum velocity in cyclones is greater and the position of the maximum is closer to the axis of the vortex in comparison with anticyclones. Besides, our analysis shows that the size R of the anticyclone cannot exceed a certain critical value, which depends on the Rossby and Reynolds numbers. The maximum size of the cyclones is limited only by the system size under the same conditions. Our predictions are based on the linear evolution of turbulent pulsations on the background of the coherent vortex flow and are accompanied by estimates following the nonlinear Navier–Stokes equation.

1.
F. S.
Godeferd
and
F.
Moisy
, “
Structure and dynamics of rotating turbulence: A review of recent experimental and numerical results
,”
Appl. Mech. Rev.
67
,
030802
(
2015
).
2.
J.
Proudman
, “
On the motion of solids in a liquid possessing vorticity
,”
Proc. R. Soc. London, Ser. A
92
,
408
424
(
1916
).
3.
G. I.
Taylor
, “
Motion of solids in fluids when the flow is not irrotational
,”
Proc. R. Soc. London, Ser. A
93
,
99
113
(
1917
).
4.
G.
Boffetta
and
R. E.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
451
(
2012
).
5.
A.
McEwan
, “
Angular momentum diffusion and the initiation of cyclones
,”
Nature
260
,
126
128
(
1976
).
6.
E.
Hopfinger
,
F.
Browand
, and
Y.
Gagne
, “
Turbulence and waves in a rotating tank
,”
J. Fluid Mech.
125
,
505
534
(
1982
).
7.
J. E.
Ruppert-Felsot
,
O.
Praud
,
E.
Sharon
, and
H. L.
Swinney
, “
Extraction of coherent structures in a rotating turbulent flow experiment
,”
Phys. Rev. E
72
,
016311
(
2005
).
8.
P.
Staplehurst
,
P.
Davidson
, and
S.
Dalziel
, “
Structure formation in homogeneous freely decaying rotating turbulence
,”
J. Fluid Mech.
598
,
81
(
2008
).
9.
F.
Moisy
,
C.
Morize
,
M.
Rabaud
, and
J.
Sommeria
, “
Decay laws, anisotropy and cyclone-anticyclone asymmetry in decaying rotating turbulence
,”
J. Fluid Mech.
666
,
5
(
2011
).
10.
B.
Gallet
,
A.
Campagne
,
P.-P.
Cortet
, and
F.
Moisy
, “
Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment
,”
Phys. Fluids
26
,
035108
(
2014
).
11.
G.
Boffetta
,
F.
Toselli
,
M.
Manfrin
, and
S.
Musacchio
, “
Cyclone–anticyclone asymmetry in rotating thin fluid layers
,”
J. Turbul.
22
,
242
212
(
2021
).
12.
P.
Bartello
,
O.
Métais
, and
M.
Lesieur
, “
Coherent structures in rotating three-dimensional turbulence
,”
J. Fluid Mech.
273
,
1
29
(
1994
).
13.
P.
Yeung
and
Y.
Zhou
, “
Numerical study of rotating turbulence with external forcing
,”
Phys. Fluids
10
,
2895
2909
(
1998
).
14.
L. M.
Smith
and
F.
Waleffe
, “
Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence
,”
Phys. Fluids
11
,
1608
1622
(
1999
).
15.
K.
Yoshimatsu
,
M.
Midorikawa
, and
Y.
Kaneda
, “
Columnar eddy formation in freely decaying homogeneous rotating turbulence
,”
J. Fluid Mech.
677
,
154
(
2011
).
16.
L.
Biferale
,
F.
Bonaccorso
,
I. M.
Mazzitelli
,
M. A.
van Hinsberg
,
A. S.
Lanotte
,
S.
Musacchio
,
P.
Perlekar
, and
F.
Toschi
, “
Coherent structures and extreme events in rotating multiphase turbulent flows
,”
Phys. Rev. X
6
,
041036
(
2016
).
17.
K.
Seshasayanan
and
A.
Alexakis
, “
Condensates in rotating turbulent flows
,”
J. Fluid Mech.
841
,
434
462
(
2018
).
18.
E.
Deusebio
,
G.
Boffetta
,
E.
Lindborg
, and
S.
Musacchio
, “
Dimensional transition in rotating turbulence
,”
Phys. Rev. E
90
,
023005
(
2014
).
19.
A.
Naso
, “
Cyclone-anticyclone asymmetry and alignment statistics in homogeneous rotating turbulence
,”
Phys. Fluids
27
,
035108
(
2015
).
20.
I.
Kolokolov
,
L.
Ogorodnikov
, and
S.
Vergeles
, “
Structure of coherent columnar vortices in three-dimensional rotating turbulent flow
,”
Phys. Rev. Fluids
5
,
034604
(
2020
).
21.
A.
Doludenko
,
S.
Fortova
,
I.
Kolokolov
, and
V.
Lebedev
, “
Coherent vortex in a spatially restricted two-dimensional turbulent flow in absence of bottom friction
,”
Phys. Fluids
33
,
011704
(
2021
).
22.
A. J.
Smits
,
B. J.
McKeon
, and
I.
Marusic
, “
High-Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
375
(
2011
).
23.
S. A.
Balbus
, “
When is high Reynolds number shear flow not turbulent?
,”
J. Fluid Mech.
824
,
1
4
(
2017
).
24.
S.
Nazarenko
,
N.-R.
Kevlahan
, and
B.
Dubrulle
, “
Nonlinear RDT theory of near-wall turbulence
,”
Physica D
139
,
158
176
(
2000
).
25.
G.
Falkovich
, “
Interaction between mean flow and turbulence in two dimensions
,”
Proc. R. Soc. A
472
,
20160287
(
2016
).
26.
J.
Laurie
,
G.
Boffetta
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Universal profile of the vortex condensate in two-dimensional turbulence
,”
Phys. Rev. Lett.
113
,
254503
(
2014
).
27.
A.
Salhi
and
C.
Cambon
, “
An analysis of rotating shear flow using linear theory and DNS and LES results
,”
J. Fluid Mech.
347
,
171
195
(
1997
).
28.
S.
Galtier
, “
Weak inertial-wave turbulence theory
,”
Phys. Rev. E
68
,
015301
(
2003
).
29.
F.
Champagne
,
V.
Harris
, and
S.
Corrsin
, “
Experiments on nearly homogeneous turbulent shear flow
,”
J. Fluid Mech.
41
,
81
139
(
1970
).
You do not currently have access to this content.