A direct numerical simulation of the interaction between a shock wave and the supersonic turbulent boundary layer in a compression–decompression corner with a fixed 24° deflection angle at Mach 2.9 is conducted. The characteristics of the shock interactions are investigated for two heights between the compression and decompression corners, corresponding to H/δref=4.25,1.22, where δref denotes the reference turbulent boundary layer thickness. A classic shock wave/turbulent boundary layer interaction flow is reproduced in the higher case. For the lower case, the size of the separation region is significantly decreased, and the low-frequency unsteadiness is slightly suppressed in the interaction region, as assessed by analyzing the mean and fluctuating wall pressure. Flow patterns near the reattachment line show the existence of the Görtler vortices. By analyzing the curvature radius and Görtler number distribution, it was found that a strong centrifuge instability is reserved in the compression corner region and reversed in the decompression corner region due to the convex streamline curvature. The downstream flow of the decompression corner is relatively complex where the additional shocklet and new streamwise vortices are observed. A negative response mechanism is found regarding fluctuating wall-pressure signatures between the upstream and downstream of the decompression corner.

1.
A.
Ferri
, “
Experimental results with airfoils tested in the high-speed tunnel at Guidonia
,”
Report No. 946
(
1940
).
2.
N. T.
Clemens
and
V.
Narayanaswamy
, “
Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions
,”
Annu. Rev. Fluid Mech.
46
,
469
(
2014
).
3.
D. V.
Gaitonde
, “
Progress in shock wave/boundary layer interactions
,”
Prog. Aerosp. Sci.
72
,
80
(
2015
).
4.
D. S.
Dolling
, “
Fifty years of shock-wave/boundary-layer interaction research: What next?
,”
AIAA J.
39
,
1517
(
2001
).
5.
M. S.
Loginov
,
N. A.
Adams
, and
A. A.
Zheltovodov
, “
Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction
,”
J. Fluid Mech.
565
,
135
(
2006
).
6.
R.
Narasimha
and
K. R.
Sreenivasan
, “
Relaminarization in highly accelerated turbulent boundary layers
,”
J. Fluid Mech.
61
,
417
(
1973
).
7.
S.
Teramoto
,
H.
Sanada
, and
K.
Okamoto
, “
Dilatation effect in relaminarization of an accelerating supersonic turbulent boundary layer
,”
AIAA J.
55
,
1469
(
2017
).
8.
M.
Grilli
,
S.
Hickel
, and
N. A.
Adams
, “
Large-eddy simulation of a supersonic turbulent boundary layer over a compression–expansion ramp
,”
Int. J. Heat Fluid Flow
42
,
79
(
2013
).
9.
A. A.
Zheltovodov
,
V. M.
Trofimov
,
E.
Schülein
, and
V. N.
Yakovlev
, “
An experimental documentation of supersonic turbulent flows in the vicinity of forward- and backward-facing ramps
,”
Report No. 2030
(
Institute of Theoretical and Applied Mechanics, USSR Academy of Sciences
,
Novosibirsk
,
1990
).
10.
E.
Goshtasbi Rad
and
S. M.
Mousavi
, “
Wall modeled large eddy simulation of supersonic flow physics over compression-expansion ramp
,”
Acta Astron.
117
,
197
(
2015
).
11.
N. A.
Adams
, “
Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re(θ) = 1685
,”
J. Fluid Mech.
420
,
47
(
2000
).
12.
S.
Pirozzoli
and
F.
Grasso
, “
Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25
,”
Phys. Fluids
18
,
065113
(
2006
).
13.
M.
Wu
and
M. P.
Martin
, “
Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp
,”
AIAA J.
45
,
879
(
2007
).
14.
X.
Li
,
D.
Fu
,
Y.
Ma
, and
X.
Liang
, “
Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp
,”
Sci. China Phys., Mech. Astron.
53
,
1651
(
2010
).
15.
S.
Priebe
and
M. P.
Martín
, “
Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction
,”
J. Fluid Mech.
699
,
1
(
2012
).
16.
F.
Tong
,
C.
Yu
,
Z.
Tang
, and
X.
Li
, “
Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner: Turning angle effects
,”
Comput. Fluids
149
,
56
(
2017
).
17.
J.
Fang
,
A. A.
Zheltovodov
,
Y.
Yao
,
C.
Moulinec
, and
D. R.
Emerson
, “
On the turbulence amplification in shock-wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
897
,
A32
(
2020
).
18.
P.
Bookey
,
C.
Wyckham
,
A.
Smits
, and
M. P.
Martin
, “
New experimental data of STBLI at DNS/LES accessible Reynolds numbers
,” in
43rd AIAA Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
Reno, Nevada
,
2005
).
19.
M.
Wu
and
M. P.
Martín
, “
Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data
,”
J. Fluid Mech.
594
,
71
(
2008
).
20.
S.
Priebe
,
M.
Wu
, and
M. P.
Martín
, “
Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction
,”
AIAA J.
47
,
1173
(
2009
).
21.
S.
Priebe
,
J. H.
Tu
,
C. W.
Rowley
, and
M. P.
Martín
, “
Low-frequency dynamics in a shock-induced separated flow
,”
J. Fluid Mech.
807
,
441
(
2016
).
22.
K.
Ritos
,
D.
Drikakis
,
I. W.
Kokkinakis
, and
S. M.
Spottswood
, “
Computational aeroacoustics beneath high speed transitional and turbulent boundary layers
,”
Comput. Fluids
203
,
104520
(
2020
).
23.
D.
Xu
,
S.
Luo
,
J.
Song
,
J.
Liu
, and
W.
Cao
, “
Direct numerical simulations of supersonic compression-expansion slope with a multi-GPU parallel algorithm
,”
Acta Astron.
179
,
20
(
2021
).
24.
H.
Babinsky
and
J. K.
Harvey
,
Shock Wave-Boundary-Layer Interactions
(
Cambridge University Press
,
2011
).
25.
F.
Tong
,
X.
Li
,
Y.
Duan
, and
C.
Yu
, “
Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp
,”
Phys. Fluids
29
,
125101
(
2017
).
26.
X. L.
Li
,
D. X.
Fu
,
Y. W.
Ma
, and
X.
Liang
, “
Direct numerical simulation of compressible turbulent flows
,”
Acta Mech. Sin./Lixue Xuebao
26
,
795
(
2010
).
27.
M. P.
Martín
,
E. M.
Taylor
,
M.
Wu
, and
V. G.
Weirs
, “
A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence
,”
J. Comput. Phys.
220
,
270
(
2006
).
28.
I. W.
Kokkinakis
,
D.
Drikakis
,
K.
Ritos
, and
S. M.
Spottswood
, “
Direct numerical simulation of supersonic flow and acoustics over a compression ramp
,”
Phys. Fluids
32
,
066107
(
2020
).
29.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25
,”
Phys. Fluids
16
,
530
(
2004
).
30.
J.
Poggie
,
N. J.
Bisek
, and
R.
Gosse
, “
Resolution effects in compressible, turbulent boundary layer simulations
,”
Comput. Fluids
120
,
57
(
2015
).
31.
X.
Wu
and
P.
Moin
, “
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer
,”
J. Fluid Mech.
630
,
5
(
2009
).
32.
S. P.
Gravante
,
A. M.
Naguib
,
C. E.
Wark
, and
H. M.
Nagib
, “
Characterization of the pressure fluctuations under a fully developed turbulent boundary layer
,”
AIAA J.
36
,
1808
(
1998
).
33.
T. M.
Farabee
and
M. J.
Casarella
, “
Spectral features of wall pressure fluctuations beneath turbulent boundary layers
,”
Phys. Fluids A
3
,
2410
(
1991
).
34.
W. K.
Blake
,
Mechanics of Flow-Induced Sound and Vibration
(
Academic Press
,
1986
).
35.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
36.
J.
Fang
,
Y.
Yao
,
A. A.
Zheltovodov
,
Z.
Li
, and
L.
Lu
, “
Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner
,”
Phys. Fluids
27
,
125104
(
2015
).
37.
A. A.
Zheltovodov
, “
Peculiarities of development and modeling possibilities of supersonic turbulent separated flows
,”
Separated Flows and Jets: IUTAM Symposium
(
1991
), Vol.
225
.
38.
J. M.
Floryan
, “
On the Görtler instability of boundary layers
,”
Prog. Aerosp. Sci.
28
,
235
(
1991
).
39.
H.
Görtler
, “
Instabilität laminarer Grenzchichten an konkaven wänder gegenüber gewissen dreidimensionalen Störungen
,”
Report No. 1375
(
1954
).
40.
J. J.
Ginoux
, “
Experimental evidence of three-dimensional perturbations in the reattachment of a two-dimensional laminar boundary layer at M = 2.05
,” Technical Report TCEA TN1 Rhode–Saint–Genese, Belgium, 1958. (TCEA TN1 Training Center for Experimental Aerodynamics, Rhode–Saint–Genese, Belgium,
1958
).
41.
M. S.
Selig
,
J.
Andreopoulos
,
K. C.
Muck
,
J. P.
Dussauge
, and
A. J.
Smits
, “
Turbulence structure in a shock wave/turbulent boundary-layer interaction
,”
AIAA J.
27
,
862
(
1989
).
42.
Y.
Zhuang
,
H. J.
Tan
,
X.
Li
,
F. J.
Sheng
, and
Y. C.
Zhang
, “
Letter: Görtler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow
,”
Phys. Fluids
30
,
061702
(
2018
).
43.
A. J.
Smits
and
J. P.
Dussauge
,
Turbulent Shear Layers in Supersonic Flow
, 2nd ed. (
Springer
,
NY
,
2006
).
44.
S.
Cao
,
I.
Klioutchnikov
, and
H.
Olivier
, “
Görtler vortices in hypersonic flow on compression ramps
,”
AIAA J.
57
,
3874
(
2019
).
45.
M.
Bernardini
,
S.
Pirozzoli
, and
F.
Grasso
, “
The wall pressure signature of transonic shock/boundary layer interaction
,”
J. Fluid Mech.
671
,
288
(
2011
).
46.
Y.
Na
and
P.
Moin
, “
The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation
,”
J. Fluid Mech.
377
,
347
(
1998
).
47.
S.
Priebe
and
M. P.
Martín
, “
Turbulence in a hypersonic compression ramp flow
,”
Phys. Rev. Fluids
6
,
034601
(
2021
).
48.
D. S.
Dolling
and
C. T.
Or
, “
Unsteadiness of the shock wave structure in attached and separated compression ramp flows
,”
Exp. Fluids
3
,
24
(
1985
).
49.
K. M.
Porter
and
J.
Poggie
, “
Selective upstream influence on the unsteadiness of a separated turbulent compression ramp flow
,”
Phys. Fluids
31
,
016104
(
2019
).
50.
H.
Choi
and
P.
Moin
, “
On the space-time characteristics of wall-pressure fluctuations
,”
Phys. Fluids A
2
,
1450
(
1990
).
51.
L.
Duan
,
M. M.
Choudhari
, and
M.
Wu
, “
Numerical study of acoustic radiation due to a supersonic turbulent boundary layer
,”
J. Fluid Mech.
746
,
165
(
2014
).
You do not currently have access to this content.