The response and recovery of turbulent pipe flow to three-dimensional perturbed wall changes were examined numerically in a wide range of Reynolds numbers between Re=5×103 and 1.58×105. The perturbations were based on distinct azimuthal Fourier modes corresponding to m = 3, 15, and 3 + 15. The long-lasting response of the flow was examined by characterizing both the mean and turbulent field in the wake of pipe inserts for each Re. The variation of the recovery with increasing Reynolds number revealed an asymptotic behavior for Re7.5×104, which scaled with Re4 for both mean velocity and turbulence kinetic energy. Two peaks were observed for the mean velocity along the wake centerline, where the location of peaks followed a power-law trend in the form of Lp/DRe4/3, where D is the pipe diameter. A fast decay of turbulence past the wall change further suggested that maximum Reynolds shear stress in the downstream wake decays as (x/D)1/3 for all Re. The flow also exhibited long-lasting responses that obstructed its relaxation at 20D downstream of the perturbation, even for low Re of 5×103. Overall, the recovery exhibited a second-order response.

1.
T.
Van Buren
,
L.
Hellström
, and
A.
Smits
, “
Turbulent pipe flow response to rough-to-smooth step change in roughness: Flow structure
,” in
Proceedings of Turbulence and Shear Flow Phenomena
(
2019
), Vol.
11
.
2.
A.
Smits
,
L.
Ding
, and
T.
Van Buren
, “
Flow over a square bar roughness
,” in
Proc. Turbulence and Shear Flow Phenomena
, Vol.
11
(
2019
).
3.
J.
Jiménez
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
4.
S.
Goswami
and
A.
Hemmati
, “
Response of turbulent pipeflow to multiple square bar roughness elements at high Reynolds number
,”
Phys. Fluids
32
,
075110
(
2020
).
5.
J.
Van der Kindere
and
B.
Ganapathisubramani
, “
Effect of length of two-dimensional obstacles on characteristics of separation and reattachment
,”
J. Wind Eng. Ind. Aerodyn.
178
,
38
48
(
2018
).
6.
T.
Van Buren
,
D.
Floryan
,
L.
Ding
,
L.
Hellström
, and
A.
Smits
, “
Turbulent pipe flow response to a step change in surface roughness
,”
J. Fluid Mech.
904
,
A38
(
2020
).
7.
N.
Saito
and
D.
Pullin
, “
Large eddy simulation of smooth–rough–smooth transitions in turbulent channel flows
,”
Int. J. Heat Mass Transfer
78
,
707
720
(
2014
).
8.
M.
Li
,
C. M.
De Silva
,
A.
Rouhi
,
R.
Baidya
,
D.
Chung
,
I.
Marusic
, and
N.
Hutchins
, “
Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers
,”
J. Fluid Mech.
872
,
472
491
(
2019
).
9.
M.
Ji
and
M.
Wang
, “
Sound generation by turbulent boundary-layer flow over small steps
,”
J. Fluid Mech.
654
,
161
(
2010
).
10.
L.
Ding
,
T.
Saxton-Fox
,
M.
Hultmark
, and
A.
Smits
, “
Effects of pressure gradients and streamline curvature on the statistics of a turbulent pipe flow
,” in
11th International Symposium on Turbulence and Shear Flow Phenomena
, TSFP,
2019
.
11.
G.
Yin
,
B.
Nitter
, and
M. C.
Ong
, “
Numerical simulations of turbulent flow through an orifice plate in a pipe
,”
J. Offshore Mech. Arct. Eng.
143
,
041903
(
2021
).
12.
G.
Feng
,
Y.
Guo
,
D.
Shi
,
C.
Gu
,
F.
Yu
,
T.
Long
, and
S.
Sun
, “
Experimental and numerical study of the flow characteristics of a novel olive-shaped flowmeter (osf
),”
Flow Meas. Instrum.
76
,
101832
(
2020
).
13.
H.
Hatoum
,
X.-M.
Mo
,
J. A.
Crestanello
, and
L. P.
Dasi
, “
Modeling of the instantaneous transvalvular pressure gradient in aortic stenosis
,”
Ann. Biomed. Eng.
47
,
1748
1763
(
2019
).
14.
R.
Antonia
and
R.
Luxton
, “
The response of a turbulent boundary layer to an upstanding step change in surface roughness
,”
J. Basic Eng.
93
(
1
):
22
32
(
1971
).
15.
A. J.
Smits
,
S.
Young
, and
P.
Bradshaw
, “
The effect of short regions of high surface curvature on turbulent boundary layers
,”
J. Fluid Mech.
94
,
209
242
(
1979
).
16.
A.
Smits
and
D.
Wood
, “
The response of turbulent boundary layers to sudden perturbations
,”
Annu. Rev. Fluid Mech.
17
,
321
358
(
1985
).
17.
F.
Durst
and
A.-B.
Wang
, “
Experimental and numerical investigations of the axisymmetric, turbulent pipe flow over a wall-mounted thin obstacle
,” in
7th Symposium on Turbulent Shear Flows
(
1989
), Vol. 1, pp.
10
14
.
18.
G.
Dimaczek
,
C.
Tropea
, and
A.-B.
Wang
, “
Turbulent flow over two-dimensional, surface-mounted obstacles: Plane and axisymmetric geometries
,” in
Advances in Turbulence 2
(
Springer
,
1989
), pp.
114
121
.
19.
F.
Durst
,
M.
Founti
, and
A.
Wang
, “
Experimental investigation of the flow through an axisymmetric constriction
,” in
Turbulent Shear Flows 6
(
Springer
,
1989
), pp.
338
350
.
20.
M. V.
Zagarola
and
A. J.
Smits
, “
Mean-flow scaling of turbulent pipe flow
,”
J. Fluid Mech.
373
,
33
79
(
1998
).
21.
M.
Hultmark
,
S. C.
Bailey
, and
A. J.
Smits
, “
Scaling of near-wall turbulence in pipe flow
,”
J. Fluid Mech.
649
,
103
(
2010
).
22.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A.
Smits
, “
Turbulent pipe flow at extreme Reynolds numbers
,”
Phys. Rev. Lett.
108
,
094501
(
2012
).
23.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A.
Smits
, “
Logarithmic scaling of turbulence in smooth-and rough-wall pipe flow
,”
J. Fluid Mech.
728
,
376
(
2013
).
24.
U.
Senturk
and
A. J.
Smits
, “
Roughness effects in laminar pipe flow
,” preprint arXiv:1905.12479 (
2019
).
25.
Y.
Liu
,
J.
Li
, and
A. J.
Smits
, “
Roughness effects in laminar channel flow
,”
J. Fluid Mech.
876
,
1129
1145
(
2019
).
26.
D.
Cappelli
and
N. N.
Mansour
, “
Performance of Reynolds averaged navier-stokes models in predicting separated flows: Study of the hump flow model problem
,” in
31st AIAA Applied Aerodynamics Conference
(AIAA,
2013
), p.
3154
.
27.
M. B. T.
Fogaing
,
A.
Hemmati
,
C. F.
Lange
, and
B. A.
Fleck
, “
Performance of turbulence models in simulating wind loads on photovoltaics modules
,”
Energies
12
,
3290
(
2019
).
28.
T.
Van Buren
,
L. H.
Hellstrom
,
I.
Marusic
, and
A. J.
Smits
, “
Turbulent pipe flow response to wall changes targeting specific azimuthal modes
,” in
Tenth International Symposium on Turbulence and Shear Flow Phenomena,
3
,
Begel House Inc
(
2017
).
29.
F.
Liu
, “
A thorough description of how wall functions are implemented in openfoam
,” in
Proceedings of CFD with OpenSource Software
(Chalmers University of Technology, Gothenburg Sweden,
2016
), pp.
1
33
.
30.
B.
McKeon
,
C.
Swanson
,
M.
Zagarola
,
R.
Donnelly
, and
A. J.
SMITS
, “
Friction factors for smooth pipe flow
,”
J. Fluid Mech.
511
,
41
(
2004
).
31.
B. E.
Launder
and
D. B.
Spalding
, “
The numerical computation of turbulent flows
,” in
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
(
Elsevier
,
1983
), pp.
96
116
.
32.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
(
Pearson education
,
2007
).
33.
S.
Goswami
and
A.
Hemmati
, “
Evolution of turbulent pipe flow recovery over a square bar roughness element at a range of Reynolds numbers
,”
Phys. Fluids
33
,
035113
(
2021
).
34.
C. J.
Greenshields
, “
Openfoam-the open source cfd toolbox-user guide
,” OpenFOAM Found. Ltd Version 2 (
2015
).
35.
G. L.
Morrison
,
R. E.
Deotte
, Jr.
,
G. H.
Nail
, and
D. L.
Panak
, “
Mean velocity and turbulence fields inside a β = 0.50 orifice flowmeter
,”
AIChE J.
39
,
745
756
(
1993
).
36.
M. S.
Shah
,
J. B.
Joshi
,
A. S.
Kalsi
,
C.
Prasad
, and
D. S.
Shukla
, “
Analysis of flow through an orifice meter: CFD simulation
,”
Chem. Eng. Sci.
71
,
300
309
(
2012
).
37.
M.
Zagarola
,
A.
Smits
,
S.
Orszag
, and
V.
Yakhot
, “
Experiments in high Reynolds number turbulent pipe flow
,” in
34th Aerospace Sciences Meeting and Exhibit
(AIAA,
1996
), p.
654
.
38.
J.
Kühnen
,
B.
Song
,
D.
Scarselli
,
N. B.
Budanur
,
M.
Riedl
,
A. P.
Willis
,
M.
Avila
, and
B.
Hof
, “
Destabilizing turbulence in pipe flow
,”
Nat. Phys.
14
,
386
390
(
2018
).
39.
J.
Eggels
,
F.
Unger
,
M.
Weiss
,
J.
Westerweel
,
R. J.
Adrian
,
R.
Friedrich
, and
F.
Nieuwstadt
, “
Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment
,”
J. Fluid Mech.
268
,
175
210
(
1994
).
40.
J.
Den Toonder
and
F.
Nieuwstadt
, “
Reynolds number effects in a turbulent pipe flow for low to moderate Re
,”
Phys. Fluids
9
,
3398
3409
(
1997
).
41.
T.
Yamagata
,
A.
Ito
,
Y.
Sato
, and
N.
Fujisawa
, “
Experimental and numerical studies on mass transfer characteristics behind an orifice in a circular pipe for application to pipe-wall thinning
,”
Exp. Thermal Fluid Sci.
52
,
239
247
(
2014
).
42.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2001
).
43.
D.
Walters
,
S.
Bhushan
,
M.
Alam
, and
D.
Thompson
, “
Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations
,”
Flow, Turbul. Combust.
91
,
643
667
(
2013
).
44.
M.
Malin
, “
Turbulent pipe flow of power-law fluids
,”
Int. Commun. Heat Mass Transfer
24
,
977
988
(
1997
).
45.
N.
Furuichi
,
Y.
Terao
,
Y.
Wada
, and
Y.
Tsuji
, “
Friction factor and mean velocity profile for pipe flow at high Reynolds numbers
,”
Phys. Fluids
27
,
095108
(
2015
).
You do not currently have access to this content.