Flow-induced vibration (FIV) of a flexible cylinder with an upstream wake interference at a subcritical Reynolds number is numerically investigated in this study. Two cylinders are installed in a tandem arrangement with the tandem separation between the cylinder centers set at 5.0 diameters. The downstream cylinder is flexible and placed in the wake of the stationary rigid upstream cylinder. A quasi-three-dimensional fluid-structure interaction (FSI) numerical methodology that couples the strip theory-based Lagrangian discrete vortex method with the finite-element method (FEM) for structural dynamics is developed to simulate the FIV response of the flexible cylinder with the upstream wake interference. The vortex-induced vibration (VIV) of an identical isolated cylinder is also numerically simulated as a contrast. This numerical study characterizes the dynamic response of the cylinder FIV with the upstream wake interference and sheds light on the FSI mechanisms responsible for the structural dynamic response. With the upstream wake interference, the cylinder FIV response shows two features distinct from the isolated VIV response: the vibration of large amplitude during the modal resonance branch transition and the extension of the modal resonance branch. The hydrodynamic coefficients database is constructed by the rigid cylinder forced vibration experiment to help explain the FSI properties of the FIV dynamic response. The lower added mass coefficient for the FIV with the upstream wake interference than the VIV of the isolated cylinder guarantees the synchronization between the vortex shedding frequency and the “true” natural frequency of the structure persisting to higher reduced velocity in a certain modal resonance response branch. The excitation coefficient distribution indicates that the cylinder FIV with the upstream wake interference reaches higher amplitude at high reduced velocity, instead of ceasing resonance as the isolated cylinder. The numerical wake visualization is shown and used to explain the correlation between the distribution of hydrodynamic coefficients along the cylinder span and the wake vortex mode. It is found that the upstream wake interference effect is strongly correlated with the vortex–structure interaction pattern between the upstream wake vortices and the downstream motion. When the upstream vortex impinges on the downstream cylinder and splits into subvortices, the effect of the upstream wake interference acting on the downstream cylinder reduces. When the downstream cylinder enters the gap between the upstream vortices over the entire vibration process, the upstream wake has a stronger interference effect on the downstream FIV response.

1.
Alam
,
M. M.
, and
Meyer
,
J. P.
, “
Two interacting cylinders in cross flow
,”
Phys. Rev. E
84
,
056304
(
2011
).
2.
Allen
,
D. W.
, and
Henning
,
D. L.
, “
Vortex-induced vibration current tank tests of two equal-diameter cylinders in tandem
,”
J. Fluids Struct.
17
,
767
781
(
2003
).
3.
Assi
,
G. R. S.
,
Bearman
,
P. W.
,
Carmo
,
B. S.
,
Meneghini
,
J. R.
,
Sherwin
,
S. J.
, and
Willden
,
R. H. J.
, “
The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair
,”
J. Fluid Mech.
718
,
210
245
(
2013
).
4.
Assi
,
G. R. S.
,
Bearman
,
P. W.
, and
Meneghini
,
J. R.
, “
On the wake-induced vibration of tandem circular cylinders: The vortex interaction excitation mechanism
,”
J. Fluid Mech.
661
,
365
401
(
2010
).
5.
Bao
,
Y.
,
Huang
,
C.
,
Zhou
,
D.
,
Tu
,
J. H.
, and
Han
,
Z. L.
, “
Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios
,”
J. Fluids Struct.
35
,
50
70
(
2012
).
6.
Bao
,
Y.
,
Palacios
,
R.
,
Graham
,
M.
, and
Sherwin
,
S.
, “
Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders
,”
J. Comput. Phys.
321
,
1079
1097
(
2016
).
7.
Bokaian
,
A.
, and
Geoola
,
F.
, “
Wake-induced galloping of two interfering circular cylinders
,”
J. Fluid Mech.
146
,
383
415
(
1984
).
8.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
, “
Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region
,”
J. Fluid Mech.
621
,
321
364
(
2009
).
9.
Brika
,
D.
, and
Laneville
,
A.
, “
The flow interaction between a stationary cylinder and a downstream flexible cylinder
,”
J. Fluids Struct.
13
(
5
),
579
(
1999
).
10.
Carberry
,
J.
,
Sheridan
,
J.
, and
Rockwell
,
D.
, “
Controlled oscillations of a cylinder: Forces and wake modes
,”
J. Fluid Mech.
538
,
31
69
(
2005
).
11.
Chorin
,
A. J.
, “
Numerical study of slightly viscous flow
,”
J. Fluid Mech.
57
,
785
796
(
1973
).
12.
Fan
,
D.
,
Jodin
,
G.
,
Consi
,
T.
,
Bonfiglio
,
L.
,
Ma
,
Y.
,
Keyes
,
L.
,
Karniadakis
,
G. E.
, and
Triantafyllou
,
M. S.
, “
A robotic intelligent towing tank for learning complex fluid-structure dynamics
,”
Sci. Rob.
4
(
36
),
eaay5063
(
2019a
).
13.
Fan
,
D.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
, “
Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow
,”
J. Fluid Mech.
881
,
815
858
(
2019b
).
14.
Gonzalez
,
L. M.
,
Rodriguez
,
A.
,
Garrido
,
C. A.
,
Suarez
,
J. C.
, and
Huera-Huarte
,
F.
, “
CFD simulations on the vortex-induced vibrations of a flexible cylinder with wake interference
,” in
Proceedings of OMAE'2015-34th International Conference on Offshore Mechanics and Arctic Engineering
, Newfoundland, Canada (
2015
).
15.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
, “
Modes of vortex formation and frequency response of a freely vibrating cylinder
,”
J. Fluid Mech.
420
,
85
130
(
2000
).
16.
Griffith
,
M. D.
,
Jacono
,
D. L.
,
Sheridan
,
J.
, and
Leontini
,
J. S.
, “
Flow-induced vibration of two cylinders in tandem and staggered arrangements
,”
J. Fluid Mech.
833
,
98
130
(
2017
).
17.
Hover
,
F. S.
,
Techet
,
A. H.
, and
Triantafyllou
,
M. S.
, “
Forces on oscillating uniform and tapered cylinders in crossflow
,”
J. Fluid Mech.
363
,
97
114
(
1998
).
18.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, “
Galloping response of a cylinder with upstream wake interference
,”
J. Fluids Struct.
15
,
503
512
(
2001
).
19.
Hu
,
Z. M.
,
Wang
,
J. S.
, and
Sun
,
Y. K.
, “
Cross-flow vibrations of two identical elastically mounted cylinders in tandem arrangement using wind tunnel experiment
,”
Ocean Eng.
209
,
107501
(
2020
).
20.
Hu
,
J. C.
, and
Zhou
,
Y.
, “
Flow structure behind two staggered circular cylinders. Part 1. Downstream evolution and classification
,”
J. Fluid Mech.
607
,
51
80
(
2008
).
21.
Huera-Huarte
,
F. J.
,
Bangash
,
Z. A.
, and
Gonzalez
,
L. M.
, “
Multi-mode vortex and wake-induced vibrations of a flexible cylinder in tandem arrangement
,”
J. Fluids Struct.
66
,
571
588
(
2016
).
22.
Huera-Huarte
,
F. J.
, and
Bearman
,
P. W.
, “
Wake structures and vortex-induced vibrations of a long flexible cylinder. Part 1: Dynamic response
,”
J. Fluids Struct.
25
,
969
990
(
2009
).
23.
Huera-Huarte
,
F. J.
, and
Bearman
,
P. W.
, “
Vortex and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with near wake interference
,”
J. Fluids Struct.
27
,
193
211
(
2011
).
24.
Huera-Huarte
,
F. J.
, and
Gharib
,
M.
, “
Vortex- and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with far wake interference
,”
J. Fluids Struct.
27
,
824
828
(
2011
).
25.
Jiang
,
R.
, and
Lin
,
J.
, “
Poiseuille flow-induced vibrations of two tandem circular cylinders with different mass ratios
,”
Phys. Fluids
28
,
064105
(
2016
).
26.
Khalak
,
A.
, and
Williamson
,
C. H. K.
, “
Dynamics of a hydroelastic cylinder with very low mass and damping
,”
J. Fluids Struct.
10
,
455
472
(
1996
).
27.
Kim
,
S.
,
Alam
,
M. M.
,
Sakamoto
,
H.
, and
Zhou
,
Y.
, “
Flow-induced vibrations of two cylinders in tandem arrangement. Part 1: Characteristic of vibration
,”
J. Wind Eng. Ind. Aerodyn.
97
,
304
311
(
2009
).
28.
Lee
,
C.
,
Paik
,
K.
,
Kim
,
E. S.
, and
Lee
,
I.
, “
A fluid-structure interaction simulation on the wake-induced vibration of tandem cylinders with pivoted rotational motion
,”
Phys. Fluids
33
,
045107
(
2021
).
29.
Li
,
X.
,
Zhang
,
W.
, and
Gao
,
C.
, “
Proximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic model
,”
Phys. Fluids
30
,
033606
(
2018
).
30.
Lin
,
K.
,
Fan
,
D.
, and
Wang
,
J.
, “
Dynamic response and hydrodynamic coefficients of a cylinder oscillating in crossflow with an upstream wake interference
,”
Ocean Eng.
209
,
107520
(
2020a
).
31.
Lin
,
K.
, and
Wang
,
J.
, “
Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method
,”
Ocean Eng.
172
,
468
486
(
2019
).
32.
Lin
,
K.
,
Wang
,
J. S.
,
Zheng
,
H. X.
, and
Sun
,
Y. K.
, “
Numerical investigation of flow-induced vibrations of two cylinders in tandem arrangement with full wake interference
,”
Phys. Fluids
32
,
015112
(
2020b
).
33.
Liu
,
H. Z.
,
Wang
,
F.
,
Jiang
,
G. S.
,
Guo
,
H. Y.
, and
Li
,
X. M.
, “
Laboratory measurements of vortex- and wake-induced vibrations of a tandem arrangement of two flexible risers
,”
China Ocean Eng.
30
,
47
56
(
2016
).
34.
Mittal
,
S.
, and
Kumar
,
V.
, “
Vortex-induced vibrations of a pair of cylinders at Reynolds number 1000
,”
Int. J. Comput. Fluid Dyn.
18
,
601
614
(
2004
).
35.
Papaioannou
,
C. V.
,
Yue
,
D. K. P.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
, “
On the effect of spacing on the vortex-induced vibrations of two tandem cylinders
,”
J. Fluids Struct.
24
,
833
854
(
2008
).
36.
Prasanth
,
T. K.
, and
Mittal
,
S.
, “
Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re
,”
J. Fluids Struct.
25
,
1029
1048
(
2009
).
37.
Sumner
,
D.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
, “
Flow-pattern identification for two staggered circular cylinders in cross-flow
,”
J. Fluid Mech.
411
,
263
303
(
2000
).
38.
Wang
,
Z.
,
Fan
,
D.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
, “
A large-eddy simulation study on the similarity between free vibrations of a flexible cylinder and forced vibrations of a rigid cylinder
,”
J. Fluids Struct.
101
,
103223
(
2021
).
39.
Wang
,
E. H.
,
Xiao
,
Q.
,
Zhu
,
Q.
, and
Incecik
,
A.
, “
The effect of spacing on the vortex-induced vibrations of two tandem flexible cylinders
,”
Phys. Fluids
29
,
077103
(
2017
).
40.
Wang
,
Z. J.
, and
Zhou
,
Y.
, “
Vortex interactions in a two side-by-side cylinder near-wake
,”
Int. J. Heat Fluid Flow
26
,
362
377
(
2005
).
41.
Willden
,
R. H. J.
, and
Graham
,
J. M. R.
, “
Numerical prediction of VIV on long flexible circular cylinders
,”
J. Fluids Struct.
15
,
659
669
(
2001
).
42.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
(
1
),
413
455
(
2004
).
43.
Xu
,
W.
,
Ji
,
C.
,
Sun
,
H.
,
Ding
,
W.
, and
Bernitsas
,
M. M.
, “
Flow-induced vibration of two elastically mounted tandem cylinders in cross-flow at subcritical Reynolds numbers
,”
Ocean Eng.
173
,
375
387
(
2019
).
44.
Xu
,
W. H.
,
Ma
,
Y. X.
,
Cheng
,
A. K.
, and
Yuan
,
H.
, “
Experimental investigation on multi-mode flow-induced vibrations of two long flexible cylinders in a tandem arrangement
,”
Int. J. Mech. Sci.
135
,
261
278
(
2018
).
45.
Yamamoto
,
C. T.
,
Meneghini
,
J. R.
,
Saltara
,
F.
,
Fregonesi
,
R. A.
, and
Ferrari
,
J. A.
, “
Numerical simulations of vortex-induced vibration on flexible cylinders
,”
J. Fluids Struct.
19
,
467
489
(
2004
).
46.
Zdravkovich
,
M. M.
, “
The effects of interference between circular cylinders in cross flow
,”
J. Fluids Struct.
1
,
239
261
(
1987
).
47.
Zhu
,
H.
,
Zhang
,
C.
, and
Liu
,
W.
Wake-induced vibration of a circular cylinder at a low Reynolds number of 100
,”
Phys. Fluids
31
,
073606
(
2019
).
You do not currently have access to this content.