In the present work, an efficient active flow control strategy in eliminating vortex-induced vibration of a cylinder at Re = 100 has been explored by two machine learning frameworks, from active learning to reinforcement learning. Specifically, an adaptive control scheme by a pair of jets placed on the poles of the cylinder as actuators has been discovered. In the active learning framework, a Gaussian progress regression surrogate model is used to predict vibration amplitude of the cylinder using a limited number of numerical simulations by combining the Bayesian optimization algorithm with specified control actions while in the reinforcement learning framework, soft actor-critic deep reinforcement learning algorithm is adopted to construct a real-time control system. The results have shown that the triangle control agent in the active learning framework can reduce the vibration amplitude of the cylinder from A = 0.6 to A = 0.43. The real-time control in the reinforcement learning framework can successfully suppress the vibration amplitude to 0.11, which is decreased by 82.7%. By comparison, there are some similarities in the amplitude and phase of the action trajectories between two intelligent learning frameworks. They both aim at keeping track of the antiphase between the position and the action, which will restrain the cylinder at a low-amplitude vibration. The underlying physics shows that the jet will contain suction in the stage of vortex generation and injection in the stage of vortex shedding. The current findings have provided a new concept to the typical flow control problem and make it more practical in industrial applications.

1.
V.
Strouhal
, “
Über eine besondere art der Tonerregung
,”
Ann. Phys.
241
,
216
251
(
1878
).
2.
F.
Xie
,
D.
Pan
,
Y.
Zheng
, and
J.
Zou
, “
Smoothed profile method and its applications in VIV
,”
Int. J. Numer. Methods Heat Fluid Flow
27
,
1623–1635
(
2017
).
3.
T.
Sarpkaya
, “
A critical review of the intrinsic nature of vortex-induced vibrations
,”
J. Fluids Struct.
19
,
389
447
(
2004
).
4.
C.
Williamson
and
R.
Govardhan
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
,
413
455
(
2004
).
5.
A.
Trim
,
H.
Braaten
,
H.
Lie
, and
M.
Tognarelli
, “
Experimental investigation of vortex-induced vibration of long marine risers
,”
J. Fluids Struct.
21
,
335
361
(
2005
).
6.
R.
Galvao
,
E.
Lee
,
D.
Farrell
,
F.
Hover
,
M.
Triantafyllou
,
N.
Kitney
, and
P.
Beynet
, “
Flow control in flow–structure interaction
,”
J. Fluids Struct.
24
,
1216
1226
(
2008
).
7.
F.
Sher
,
S.
Ahmed
, and
U.
Asghar
, “
Suppression of vortex induced vibrations in marine risers by fairings
,” in
Proceedings of 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST)
(
IEEE
,
2017
), pp.
523
529
.
8.
F.
Xie
,
Y.
Yu
,
Y.
Constantinides
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
U-shaped fairings suppress vortex-induced vibrations for cylinders in cross-flow
,”
J. Fluid Mech.
782
,
300
(
2015
).
9.
W.-L.
Chen
,
G.-B.
Chen
,
F.
Xu
,
Y.-w.
Huang
,
D.-L.
Gao
, and
H.
Li
, “
Suppression of vortex-induced vibration of a circular cylinder by a passive-jet flow control
,”
J. Wind Eng. Ind. Aerodyn.
199
,
104119
(
2020
).
10.
J. P.
Pontaza
and
R. G.
Menon
, “
Numerical simulations of flow past an aspirated fairing with three degree-of-freedom motion
,” in
Proceedings of International Conference on Offshore Mechanics and Arctic Engineering
(
ASME
,
2008
), Vol.
48227
, pp.
799
807
.
11.
Y.
Delaunay
and
L.
Kaiktsis
, “
Control of circular cylinder wakes using base mass transpiration
,”
Phys. Fluids
13
,
3285
3302
(
2001
).
12.
J.
Kim
and
H.
Choi
, “
Distributed forcing of flow over a circular cylinder
,”
Phys. Fluids
17
,
033103
(
2005
).
13.
D.
You
and
P.
Moin
, “
Active control of flow separation over an airfoil using synthetic jets
,”
J. Fluids Struct.
24
,
1349
1357
(
2008
).
14.
A.
Barbagallo
,
G.
Dergham
,
D.
Sipp
,
P. J.
Schmid
, and
J.-C.
Robinet
, “
Closed-loop control of unsteadiness over a rounded backward-facing step
,”
J. Fluid Mech.
703
,
326
(
2012
).
15.
N.
Gautier
,
J.-L.
Aider
,
T.
Duriez
,
B.
Noack
,
M.
Segond
, and
M.
Abel
, “
Closed-loop separation control using machine learning
,”
J. Fluid Mech.
770
,
442
457
(
2015
).
16.
Y.
Zhou
,
D.
Fan
,
B.
Zhang
,
R.
Li
, and
B. R.
Noack
, “
Artificial intelligence control of a turbulent jet
,” arXiv:2005.04650 (
2020
).
17.
C.
Lee
,
J.
Kim
,
D.
Babcock
, and
R.
Goodman
, “
Application of neural networks to turbulence control for drag reduction
,”
Phys. Fluids
9
,
1740
1747
(
1997
).
18.
F.-f.
Xie
,
J.
Deng
, and
Y.
Zheng
, “
Multi-mode of vortex-induced vibration of a flexible circular cylinder
,”
J. Hydrodyn.
23
,
483
490
(
2011
).
19.
S.
Dong
,
G.
Triantafyllou
, and
G.
Karniadakis
, “
Elimination of vortex streets in bluff-body flows
,”
Phys. Rev. Lett.
100
,
204501
(
2008
).
20.
H.
Zhu
,
T.
Tang
,
H.
Zhao
, and
Y.
Gao
, “
Control of vortex-induced vibration of a circular cylinder using a pair of air jets at low Reynolds number
,”
Phys. Fluids
31
,
043603
(
2019
).
21.
W.-L.
Chen
,
D.-B.
Xin
,
F.
Xu
,
H.
Li
,
J.-P.
Ou
, and
H.
Hu
, “
Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control
,”
J. Fluids Struct.
42
,
25
39
(
2013
).
22.
D. R.
Jones
,
M.
Schonlau
, and
W. J.
Welch
, “
Efficient global optimization of expensive black-box functions
,”
J. Global Optim.
13
,
455
492
(
1998
).
23.
D.
Fan
,
G.
Jodin
,
T.
Consi
,
L.
Bonfiglio
,
Y.
Ma
,
L.
Keyes
,
G. E.
Karniadakis
, and
M. S.
Triantafyllou
, “
A robotic intelligent towing tank for learning complex fluid-structure dynamics
,”
Sci. Rob.
4
,
eaay5063
(
2019
).
24.
M. A.
Gelbart
,
J.
Snoek
, and
R. P.
Adams
, “
Bayesian optimization with unknown constraints
,” arXiv:1403.5607 (
2014
).
25.
H.
Zheng
,
F.
Xie
,
T.
Ji
,
Z.
Zhu
, and
Y.
Zheng
, “
Multifidelity kinematic parameter optimization of a flapping airfoil
,”
Phys. Rev. E
101
,
013107
(
2020
).
26.
C.
Talnikar
,
P.
Blonigan
,
J.
Bodart
, and
Q.
Wang
, “
Parallel optimization for LES
,” in
Proceedings of the Summer Program
(Stanford University,
2014
), p.
315
.
27.
O.
Mahfoze
,
A.
Moody
,
A.
Wynn
,
R.
Whalley
, and
S.
Laizet
, “
Reducing the skin-friction drag of a turbulent boundary-layer flow with low-amplitude wall-normal blowing within a Bayesian optimization framework
,”
Phys. Rev. Fluids
4
,
094601
(
2019
).
28.
V.
Mnih
,
K.
Kavukcuoglu
,
D.
Silver
,
A.
Graves
,
I.
Antonoglou
,
D.
Wierstra
, and
M.
Riedmiller
, “
Playing Atari with deep reinforcement learning
,” arXiv:1312.5602 (
2013
).
29.
S.
Gu
,
E.
Holly
,
T.
Lillicrap
, and
S.
Levine
, “
Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates
,” in
Proceeding of 2017 IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2017
), pp.
3389
3396
.
30.
G.
Reddy
,
A.
Celani
,
T. J.
Sejnowski
, and
M.
Vergassola
, “
Learning to soar in turbulent environments
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E4877
E4884
(
2016
).
31.
G.
Reddy
,
J.
Wong-Ng
,
A.
Celani
,
T. J.
Sejnowski
, and
M.
Vergassola
, “
Glider soaring via reinforcement learning in the field
,”
Nature
562
,
236
239
(
2018
).
32.
S.
Verma
,
G.
Novati
, and
P.
Koumoutsakos
, “
Efficient collective swimming by harnessing vortices through deep reinforcement learning
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
5849
5854
(
2018
).
33.
V.
Belus
,
J.
Rabault
,
J.
Viquerat
,
Z.
Che
,
E.
Hachem
, and
U.
Reglade
, “
Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film
,”
AIP Adv.
9
,
125014
(
2019
).
34.
J.
Rabault
,
M.
Kuchta
,
A.
Jensen
,
U.
Réglade
, and
N.
Cerardi
, “
Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
,”
J. Fluid Mech.
865
,
281
302
(
2019
).
35.
J.
Rabault
and
A.
Kuhnle
, “
Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
,”
Phys. Fluids
31
,
094105
(
2019
).
36.
H.
Tang
,
J.
Rabault
,
A.
Kuhnle
,
Y.
Wang
, and
T.
Wang
, “
Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
,”
Phys. Fluids
32
,
053605
(
2020
).
37.
R.
Paris
,
S.
Beneddine
, and
J.
Dandois
, “
Robust flow control and optimal sensor placement using deep reinforcement learning
,”
J. Fluid Mech.
913
,
A25
(
2021
).
38.
H.
Jasak
,
A.
Jemcov
,
Z.
Tukovic
 et al, “
Openfoam: A c++ library for complex physics simulations
,” in Proceedings of
International Workshop on Coupled Methods in Numerical Dynamics
(
IUC Dubrovnik, Croatia
,
2007
), Vol.
1000
, pp.
1
20
.
39.
I. E.
Barton
, “
Comparison of simple-and piso-type algorithms for transient flows
,”
Int. J. Numer. Methods Fluids
26
,
459
483
(
1998
).
40.
C. W.
Hirt
,
A. A.
Amsden
, and
J.
Cook
, “
An arbitrary Lagrangian–Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
,
227
253
(
1974
).
41.
F.
Xie
,
J.
Deng
,
Q.
Xiao
, and
Y.
Zheng
, “
A numerical simulation of VIV on a flexible circular cylinder
,”
Fluid Dyn. Res.
44
,
045508
(
2012
).
42.
A.
Wilson
and
H.
Nickisch
, “
Kernel interpolation for scalable structured gaussian processes (KISS-GP)
,” in Proceedings of
International Conference on Machine Learning
(
PMLR
,
2015
), pp.
1775
1784
.
43.
J.
Nocedal
, “
Updating quasi-Newton matrices with limited storage
,”
Math. Comput.
35
,
773
782
(
1980
).
44.
T.
Haarnoja
,
A.
Zhou
,
P.
Abbeel
, and
S.
Levine
, “
Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
,” in Proceedings of
International Conference on Machine Learning
(
PMLR
,
2018
), pp.
1861
1870
.
45.
T.
Haarnoja
,
A.
Zhou
,
K.
Hartikainen
,
G.
Tucker
,
S.
Ha
,
J.
Tan
,
V.
Kumar
,
H.
Zhu
,
A.
Gupta
,
P.
Abbeel
 et al, “
Soft actor-critic algorithms and applications
,” arXiv:1812.05905 (
2018
).
46.
I.
Akhtar
,
J.
Borggaard
,
J. A.
Burns
,
H.
Imtiaz
, and
L.
Zietsman
, “
Using functional gains for effective sensor location in flow control: A reduced-order modelling approach
,”
J. Fluid Mech.
781
,
622
(
2015
).
47.
I.
Goumiri
,
C. W.
Rowley
,
Z.
Ma
,
D.
Gates
,
J.
Krommes
, and
J.
Parker
, “
Reduced-order model based feedback control of the modified Hasegawa–Wakatani model
,”
Phys. Plasmas
20
,
042501
(
2013
).
48.
H.
Eivazi
,
H.
Veisi
,
M. H.
Naderi
, and
V.
Esfahanian
, “
Deep neural networks for nonlinear model order reduction of unsteady flows
,”
Phys. Fluids
32
,
105104
(
2020
).
49.
T.
Nakamura
,
K.
Fukami
,
K.
Hasegawa
,
Y.
Nabae
, and
K.
Fukagata
, “
Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow
,”
Phys. Fluids
33
,
025116
(
2021
).
You do not currently have access to this content.