For a gas bubble rising in quiescent liquid, most previous drag force models correlate the drag coefficient Cd to dimensionless parameters such as the Reynolds number Re, the Eötvös number Eo, and the Morton number Mo. However, it is still an open question if the current models can be applied to non-buoyancy-driven bubbles in a wide range of parameters. In the present study, we investigate the effects of Reynolds number Re and Weber number We on the drag force coefficient Cd of bubbly flows. To obtain a converged drag force, a dynamic body force model is developed, which constraints the bubble at a fixed position. A large number of numerical simulations are carried out, spanning in the (We, Re) parametric space. The correlations of Cd to We and Re are studied, respectively. We find that for low We, as the bubble keeps spherical, its drag coefficients can be well predicted by the previous spherical bubble models. For medium–high We, when Re is low, the viscous force contributes most, and therefore, the bubble deformation or We plays an insignificant role on the drag. In contrast, when Re is high, the pressure force or shape drag becomes dominant, which is strongly dependent of We. Therefore, we can identify three different regions, spherical, We-dependent, and We-independent, in the parametric space. Finally, a new empirical drag force model for a non-buoyancy-driven bubble is proposed based on the Cd-Re and Cd-We correlations obtained by our numerical simulations. The current model is superior to the previous drag models, with predicting errors within 20%, by compared to the direct numerical simulation and experimental data. More profoundly, the current model can apply to a wider range of parameters, that is, 1Re1000 and 0We20, particularly for high We, when the bubble deformation cannot be neglected.

1.
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
,
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
(
Cambridge University Press
,
2011
).
2.
R.
Torvik
and
H.
Svendsen
, “
Modelling of slurry reactors. A fundamental approach
,”
Chem. Eng. Sci.
45
,
2325
2332
(
1990
).
3.
S.
Becker
,
A.
Sokolichin
, and
G.
Eigenberger
, “
Gas–liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations
,”
Chem. Eng. Sci.
49
,
5747
5762
(
1994
).
4.
C.
Webb
,
F.
Que
, and
P.
Senior
, “
Dynamic simulation of gas–liquid dispersion behaviour in a 2-D bubble column using a graphics mini-supercomputer
,”
Chem. Eng. Sci.
47
,
3305
3312
(
1992
).
5.
A.
Lapin
and
A.
Lübbert
, “
Numerical simulation of the dynamics of two-phase gas–liquid flows in bubble columns
,”
Chem. Eng. Sci.
49
,
3661
3674
(
1994
).
6.
N. G.
Deen
,
M.
van Sint Annaland
, and
J.
Kuipers
, “
Multi-scale modeling of dispersed gas–liquid two-phase flow
,”
Chem. Eng. Sci.
59
,
1853
1861
(
2004
).
7.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall, Englewood Cliffs
,
NJ
,
1962
).
8.
D.
Moore
, “
The boundary layer on a spherical gas bubble
,”
J. Fluid Mech.
16
,
161
176
(
1963
).
9.
W. L.
Haberman
and
R.
Morton
, “
An experimental investigation of the drag and shape of air bubbles rising in various liquids
,”
Technical Report No. DTMB-802
,
David Taylor Model Basin
,
Washington DC
,
1953
.
10.
A.
Tomiyama
,
I.
Kataoka
,
I.
Zun
, and
T.
Sakaguchi
, “
Drag coefficients of single bubbles under normal and micro gravity conditions
,”
JSME Int. J., Ser. B
41
,
472
479
(
1998
).
11.
R.
Mei
and
J. F.
Klausner
, “
Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity
,”
Phys. Fluids A
4
,
63
70
(
1992
).
12.
R.
Mei
,
J. F.
Klausner
, and
C. J.
Lawrence
, “
A note on the history force on a spherical bubble at finite Reynolds number
,”
Phys. Fluids
6
,
418
420
(
1994
).
13.
S.
Lain
,
D.
Bröder
, and
M.
Sommerfeld
, “
Experimental and numerical studies of the hydrodynamics in a bubble column
,”
Chem. Eng. Sci.
54
,
4913
4920
(
1999
).
14.
D. Z.
Zhang
and
W. B.
VanderHeyden
, “
The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows
,”
Int. J. Multiphase Flow
28
,
805
822
(
2002
).
15.
M. R.
Snyder
,
O. M.
Knio
,
J.
Katz
, and
O. P.
Le Maître
, “
Statistical analysis of small bubble dynamics in isotropic turbulence
,”
Phys. Fluids
19
,
065108
(
2007
).
16.
R.
Clift
and
W.
Gauvin
, “
Motion of entrained particles in gas streams
,”
The Canadian Journal of Chemical Engineering
49
,
439
448
(
1971
).
17.
M.
Ishii
and
T.
Chawla
, “
Local drag laws in dispersed two-phase flow
,”
Nasa Sti/Recon Technical Report N
,
80
,
25631
1979
.
18.
J.
Grace
, “
Shapes and velocities of bubbles rising in infinite liquid
,”
Trans. Inst. Chem. Eng.
51
,
116
120
(
1973
).
19.
A.
Tomiyama
, “
Drag, lift and virtual mass forces acting on a single bubble
,” in
3rd International Symposium on Two-Phase Flow Modeling and Experimentation
, Pisa (
2004
).
20.
W.
Dijkhuizen
,
I.
Roghair
,
M. V. S.
Annaland
, and
J.
Kuipers
, “
DNS of gas bubbles behaviour using an improved 3D front tracking model-drag force on isolated bubbles and comparison with experiments
,”
Chem. Eng. Sci.
65
,
1415
1426
(
2010
).
21.
I.
Khlifa
,
A.
Vabre
,
M.
Hoevar
,
K.
Fezzaa
,
S.
Fuzier
,
O.
Roussette
, and
O.
Coutier-Delgosha
, “
Fast x-ray imaging of cavitating flows
,”
Exp. Fluids
58
,
157
(
2017
).
22.
D.
Moore
, “
The velocity of rise of distorted gas bubbles in a liquid of small viscosity
,”
J. Fluid Mech.
23
,
749
766
(
1965
).
23.
P.
Duineveld
, “
The rise velocity and shape of bubbles in pure water at high Reynolds number
,”
J. Fluid Mech.
292
,
325
332
(
1995
).
24.
J.
Gillissen
,
S.
Sundaresan
, and
H.
Van Den Akker
, “
A lattice Boltzmann study on the drag force in bubble swarms
,”
J. Fluid Mech.
679
,
101
(
2011
).
25.
J.
Feng
and
I. A.
Bolotnov
, “
Interfacial force study on a single bubble in laminar and turbulent flows
,”
Nucl. Eng. Des.
313
,
345
360
(
2017
).
26.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
27.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
28.
J.
Feng
and
I. A.
Bolotnov
, “
Evaluation of bubble-induced turbulence using direct numerical simulation
,”
Int. J. Multiphase Flow
93
,
92
107
(
2017
).
29.
A. J.
Sørensen
, “
A survey of dynamic positioning control systems
,”
Annu. Rev. Control
35
,
123
136
(
2011
).
30.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis (Imperial College London,
1996
).
31.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme
,”
J. Comput. Phys.
14
,
361
370
(
1974
).
32.
H. G.
Weller
, “
A new approach to VOF-based interface capturing methods for incompressible and compressible flow
,”
OpenCFD Ltd.
,
Report No. TR/HGW4
,
2008
.
33.
J. H.
Ferziger
,
M.
Perić
, and
R. L.
Street
,
Computational Methods for Fluid Dynamics
(
Springer
,
2002
), Vol.
3
.
34.
J.
Crank
and
P.
Nicolson
, “
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
,” in
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1947
), Vol.
43
, pp.
50
67
.
35.
G.
Ryskin
and
L.
Leal
, “
Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique
,”
J. Fluid Mech.
148
,
1
17
(
1984
).
36.
G.
Ryskin
and
L.
Leal
, “
Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid
,”
J. Fluid Mech.
148
,
19
35
(
1984
).
37.
I. S.
Sokolnikoff
,
Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua
(
Wiley
,
1964
).
38.
G.
Ryskin
and
J.
Rallison
, “
The extensional viscosity of a dilute suspension of spherical particles at intermediate microscale Reynolds numbers
,”
J. Fluid Mech.
99
,
513
529
(
1980
).
39.
E.
Achenbach
, “
Vortex shedding from spheres
,”
J. Fluid Mech.
62
,
209
221
(
1974
).
40.
T.
Johnson
and
V.
Patel
, “
Flow past a sphere up to a Reynolds number of 300
,”
J. Fluid Mech.
378
,
19
70
(
1999
).
41.
V. Y.
Rivkind
and
G. M.
Ryskin
, “
Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers
,”
Fluid Dyn.
11
,
5
12
(
1977
).
42.
A.
Blanco
and
J.
Magnaudet
, “
The structure of the axisymmetric high-Reynolds number flow around an ellipsoidal bubble of fixed shape
,”
Phys. Fluids
7
,
1265
1274
(
1995
).
43.
J.
Cano-Lozano
,
P.
Bohorquez
, and
C.
Martínez-Bazán
, “
Wake instability of a fixed axisymmetric bubble of realistic shape
,”
Int. J. Multiphase Flow
51
,
11
21
(
2013
).
44.
J.
Magnaudet
and
I.
Eames
, “
The motion of high-Reynolds-number bubbles in inhomogeneous flows
,”
Annu. Rev. Fluid Mech.
32
,
659
708
(
2000
).
45.
S.
Takagi
and
Y.
Matsumoto
, “
Force acting on a spherical bubble rising through a quiescent liquid
,”
Konsoryu
10
,
264
273
(
1996
).
46.
D.
Bhaga
and
M.
Weber
, “
Bubbles in viscous liquids: Shapes, wakes and velocities
,”
J. Fluid Mech.
105
,
61
85
(
1981
).
47.
J.
Tsamopoulos
,
Y.
Dimakopoulos
,
N.
Chatzidai
,
G.
Karapetsas
, and
M.
Pavlidis
, “
Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment
,”
J. Fluid Mech.
601
,
123
(
2008
).
48.
F.
Raymond
and
J.-M.
Rosant
, “
A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids
,”
Chem. Eng. Sci.
55
,
943
955
(
2000
).
You do not currently have access to this content.