The dynamic of an impacting drop with a sessile drop of the same liquid on different solid surfaces is investigated experimentally and theoretically. By controlling the surface wettability and the impact velocity, different regimes were observed, such as complete rebounding, direct coalescence, and coalescence during the retraction phase or the spreading phase. It is observed that the complete rebounding phenomenon has widely occurred during the impact on hydrophilic surfaces. In addition, both the maximum and minimum limits of coalescence/complete rebounding thresholds were determined. During the complete rebounding phenomena, and based on the energy balance, the maximum spreading diameter of the falling drop diameter on the sessile drop was proposed. In addition, the restitution coefficient and the contact time between the falling and sessile drops were studied experimentally, and theoretically, the models show a good agreement with the experimental work.

1.
M. V.
Chubynsky
,
K. I.
Belousov
,
D. A.
Lockerby
, and
J. E.
Sprittles
, “
Bouncing off the walls: The influence of gas-kinetic and van der Waals effects in drop impact
,”
Phys. Rev. Lett.
124
,
84501
(
2020
).
2.
P.
Xie
,
H.
Ding
,
D. B.
Ingham
,
L.
Ma
, and
M.
Pourkashanian
, “
Analysis and prediction of the gas-liquid interfacial area for droplets impact on solid surfaces
,”
Appl. Therm. Eng.
178
,
115583
(
2020
).
3.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
4.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
5.
P. K.
Sharma
and
H. N.
Dixit
, “
Regimes of wettability-dependent and wettability-independent bouncing of a drop on a solid surface
,”
J. Fluid Mech.
908
,
A37
(
2021
).
6.
M. J.
Thoraval
,
K.
Takehara
,
T. G.
Etoh
, and
S. T.
Thoroddsen
, “
Drop impact entrapment of bubble rings
,”
J. Fluid Mech.
724
,
234
258
(
2013
).
7.
G.
Liang
and
I.
Mudawar
, “
Review of mass and momentum interactions during drop impact on a liquid film
,”
Int. J. Heat Mass Transfer
101
,
577
599
(
2016
).
8.
S.
Zhu
,
A.
Kherbeche
,
Y.
Feng
, and
M.-J.
Thoraval
, “
Impact of an air-in-liquid compound drop onto a liquid surface
,”
Phys. Fluids
32
,
041705
(
2020
).
9.
J.
Kamp
and
M.
Kraume
, “
From single drop coalescence to droplet swarms—Scale-up considering the influence of collision velocity and drop size on coalescence probability
,”
Chem. Eng. Sci.
156
,
162
177
(
2016
).
10.
Y.
Liu
,
L.
Moevius
,
X.
Xu
,
T.
Qian
,
J. M.
Yeomans
, and
Z.
Wang
, “
Pancake bouncing on superhydrophobic surfaces
,”
Nat. Phys.
10
,
515
519
(
2014
).
11.
T.
Gilet
and
J. W. M.
Bush
, “
Droplets bouncing on a wet, inclined surface
,”
Phys. Fluids
24
(
12
),
122103
(
2012
).
12.
J.
Kamp
,
J.
Villwock
, and
M.
Kraume
, “
Drop coalescence in technical liquid/liquid applications: A review on experimental techniques and modeling approaches
,”
Rev. Chem. Eng.
33
,
1
47
(
2017
).
13.
R.
Zhao
,
Q.
Zhang
,
H.
Tjugito
, and
X.
Cheng
, “
Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
342
347
(
2015
).
14.
A. L. N.
Moreira
,
A. S.
Moita
, and
M. R.
Panão
, “
Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?
,”
Prog. Energy Combust. Sci.
36
,
554
580
(
2010
).
15.
D.
Terwagne
,
N.
Vandewalle
, and
S.
Dorbolo
, “
Lifetime of a bouncing droplet
,”
Phys. Rev. E
76
,
1
6
(
2007
).
16.
D.
Kannangara
,
H.
Zhang
, and
W.
Shen
, “
Liquid-paper interactions during liquid drop impact and recoil on paper surfaces
,”
Colloids Surf. A
280
,
203
215
(
2006
).
17.
P. M. S.
Blackett
, “
The coalescence and bouncing of water drops at an air/water interface
,”
Proc. R. Soc. London, Ser. A
280
,
545
565
(
1964
).
18.
P. D.
Hicks
and
R.
Purvis
, “
Air cushioning in droplet impacts with liquid layers and other droplets
,”
Phys. Fluids
23
(
6
),
062104
(
2011
).
19.
X.
Tang
,
A.
Saha
,
C. K.
Law
, and
C.
Sun
, “
Bouncing drop on liquid film: Dynamics of interfacial gas layer
,”
Phys. Fluids
31
(
1
),
013304
(
2019
).
20.
Z.
Wu
,
J.
Hao
,
J.
Lu
,
L.
Xu
,
G.
Hu
, and
J. M.
Floryan
, “
Small droplet bouncing on a deep pool
,”
Phys. Fluids
32
(
1
),
012107
(
2020
).
21.
X.
Tang
,
A.
Saha
,
C. K.
Law
, and
C.
Sun
, “
Bouncing-to-merging transition in drop impact on liquid film: Role of liquid viscosity
,”
Langmuir
34
,
2654
2662
(
2018
).
22.
S. T.
Thoroddsen
and
K.
Takehara
, “
The coalescence cascade of a drop
,”
Phys. Fluids
12
,
1265
1267
(
2000
).
23.
K. L.
Pan
and
C. K.
Law
, “
Dynamics of droplet-film collision
,”
J. Fluid Mech.
587
,
1
22
(
2007
).
24.
M.
Rein
, “
The transitional regime between coalescing and splashing drops
,”
J. Fluid Mech.
306
,
145
165
(
1996
).
25.
T.
Gilet
,
D.
Terwagne
,
N.
Vandewalle
, and
S.
Dorbolo
, “
Dynamics of a bouncing droplet onto a vertically vibrated interface
,”
Phys. Rev. Lett.
100
,
1
4
(
2008
).
26.
J.
Moláček
and
J. W. M.
Bush
, “
Drops bouncing on a vibrating bath
,”
J. Fluid Mech.
727
,
582
611
(
2013
).
27.
S. K.
Alghoul
,
C. N.
Eastwick
, and
D. B.
Hann
, “
Normal droplet impact on horizontal moving films: An investigation of impact behaviour and regimes
,”
Exp. Fluids
50
,
1305
1316
(
2011
).
28.
G.
Liang
,
Y.
Yang
,
Y.
Guo
,
N.
Zhen
, and
S.
Shen
, “
Rebound and spreading during a drop impact on wetted cylinders
,”
Exp. Therm. Fluid Sci.
52
,
97
103
(
2014
).
29.
Š.
Šikalo
,
C.
Tropea
, and
E. N.
Ganić
, “
Impact of droplets onto inclined surfaces
,”
J. Colloid Interface Sci.
286
,
661
669
(
2005
).
30.
M. M.
Farhangi
,
P. J.
Graham
,
N. R.
Choudhury
, and
A.
Dolatabadi
, “
Induced detachment of coalescing droplets on superhydrophobic surfaces
,”
Langmuir
28
,
1290
1303
(
2012
).
31.
Z.
Zhang
and
P.
Zhanga
, “
Kinetic energy recovery and interface hysteresis of bouncing droplets after inelastic head-on collision
,”
Phys. Fluids
29
(
10
),
103306
(
2017
).
32.
C.
Hao
,
J.
Li
,
Y.
Liu
,
X.
Zhou
,
Y.
Liu
,
R.
Liu
,
L.
Che
,
W.
Zhou
,
D.
Sun
,
L.
Li
,
L.
Xu
, and
Z.
Wang
, “
Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces
,”
Nat. Commun.
6
,
1
7
(
2015
).
33.
X.
Deng
,
L.
Mammen
,
H. J.
Butt
, and
D.
Vollmer
, “
Candle soot as a template for a transparent robust superamphiphobic coating
,”
Science
335
,
67
70
(
2012
).
34.
R.
Blossey
, “
Self-cleaning surfaces: Virtual realities
,”
Nat. Mater.
2
,
301
306
(
2003
).
35.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
, “
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
,”
ACS Nano
4
,
7699
7707
(
2010
).
36.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Surface phenomena: Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
37.
X.
Li
,
X.
Ma
, and
Z.
Lan
, “
Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: The effect of the remaining liquid film arising on the pillars' tops on the contact time
,”
Langmuir
26
,
4831
4838
(
2010
).
38.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Retraction dynamics of aqueous drops upon impact on non-wetting surfaces
,”
J. Fluid Mech.
545
,
329
338
(
2005
).
39.
P. J.
Rossky
, “
Exploring nanoscale hydrophobic hydration
,”
Faraday Discuss.
146
,
13
18
(
2010
).
40.
V.
Bergeron
,
D.
Bonn
,
J. Y.
Martin
, and
L.
Vovelle
, “
Controlling droplet deposition with polymer additives
,”
Nature
405
,
772
775
(
2000
).
41.
Y.
Liu
,
M.
Andrew
,
J.
Li
,
J. M.
Yeomans
, and
Z.
Wang
, “
Symmetry breaking in drop bouncing on curved surfaces
,”
Nat. Commun.
6
,
1
8
(
2015
).
42.
J. C.
Bird
,
R.
Dhiman
,
H. M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
388
(
2013
).
43.
F. C.
Wang
,
J. T.
Feng
, and
Y. P.
Zhao
, “
The head-on colliding process of binary liquid droplets at low velocity: High-speed photography experiments and modeling
,”
J. Colloid Interface Sci.
326
,
196
200
(
2008
).
44.
P. J.
Graham
,
M. M.
Farhangi
, and
A.
Dolatabadi
, “
Dynamics of droplet coalescence in response to increasing hydrophobicity
,”
Phys. Fluids
24
(
11
),
112105
(
2012
).
45.
J.
Wakefield
,
C. F.
Tilger
, and
M. A.
Oehlschlaeger
, “
The interaction of falling and sessile drops on a hydrophobic surface
,”
Exp. Therm. Fluid Sci.
79
,
36
43
(
2016
).
46.
M.
Damak
and
K.
Varanasi
, “
Expansion and retraction dynamics in drop-on-drop impacts on nonwetting surfaces
,”
Phys. Rev. Fluids
3
,
1
12
(
2018
).
47.
M.
Abouelsoud
,
X.
Li
,
L.
Peng
, and
B.
Bai
, “
Crown behavior during a concentric collision of a falling droplet onto a sessile droplet
,”
Exp. Fluids
59
,
1
(
2018
).
48.
M.
Abouelsoud
and
B.
Bai
, “
The splashing phenomena of a liquid droplet impacting with a sessile droplet on a dry surface
,”
Interfacial Phenom. Heat Transfer
5
,
263
271
(
2017
).
49.
O.
Ramírez-Soto
,
V.
Sanjay
,
D.
Lohse
,
J. T.
Pham
, and
D.
Vollmer
, “
Lifting a sessile oil drop with an impacting one
,” arXiv:1912.02667 (
2019
).
50.
M.
Kumar
,
R.
Bhardwaj
, and
K. C.
Sahu
, “
Coalescence dynamics of a droplet on a sessile droplet
,”
Phys. Fluids
32
(
1
),
012104
(
2020
).
51.
G.
Liang
,
H.
Yu
,
L.
Chen
,
Y.
Chen
, and
S.
Shen
, “
Spreading and oscillation induced by liquid drop impacting onto sessile drop
,”
Eur. J. Mech. B/Fluids
79
,
247
254
(
2020
).
52.
Y.
Cheng
,
J.
Li
,
J.
Xu
, and
Y.
Shen
, “
Numerical investigations of head-on collisions of binary unequal-sized droplets on superhydrophobic walls
,”
Phys. Fluids
33
(
3
),
032001
(
2021
).
53.
S.
Wildeman
,
C. W.
Visser
,
C.
Sun
, and
D.
Lohse
, “
On the spreading of impacting drops
,”
J. Fluid Mech.
805
,
636
655
(
2016
).
54.
N.
Laan
,
K. G.
De Bruin
,
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Maximum diameter of impacting liquid droplets
,”
Phys. Rev. Appl.
2
,
1
7
(
2014
).
55.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
56.
A. L.
Biance
,
F.
Chevy
,
C.
Clanet
,
G.
Lagubeau
, and
D.
Quéré
, “
On the elasticity of an inertial liquid shock
,”
J. Fluid Mech.
554
,
47
66
(
2006
).
57.
J. B.
Lee
,
D.
Derome
,
R.
Guyer
, and
J.
Carmeliet
, “
Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces
,”
Langmuir
32
,
1299
1308
(
2016
).
You do not currently have access to this content.