During the past few decades, the interest in understanding the peculiar rheological behavior of shear-thickening fluids has increased due to their potential use in various commercial applications. In such an endeavor, the optimal design of these fluids is essential, which necessitates our in-depth understanding of their properties from a modeling perspective. We herein introduce a continuum model to predict the rheological behavior of shear-thickening polymer solutions using non-equilibrium thermodynamics that guarantees, by construction, consistency with the laws of thermodynamics as extended to handle non-equilibrium systems. This is made possible by using a scalar structural variable that characterizes the formation of the shear-induced structure at sufficiently high shear rates, and a conformation tensor that characterizes the deformation of the polymer segments. The model predicts the exhibition of a shear-thickening behavior for all steady shear flow material functions (shear viscosity and normal stress coefficients), which is then followed by a shear-thinning behavior if finite extensibility or anisotropic effects are considered. We further document that these model predictions are in line with available shear viscosity rheological data for shear-thickening polymer solutions.

1.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, Fluid Mechanics Vol.
1
(
Wiley-Interscience
,
1977
).
2.
D.
Rivero
,
L. M.
Gouveia
,
A. J.
Müller
, and
A. E.
Sáez
, “
Shear-thickening behavior of high molecular weight poly(ethylene oxide) solutions
,”
Rheol. Acta
51
,
13
(
2012
).
3.
Q. M.
Wu
,
J. M.
Ruan
,
B. Y.
Huang
,
Z. C.
Zhou
, and
J. P.
Zou
, “
Rheological behavior of fumed silica suspension in polyethylene glycol
,”
J. Cent. South Univ. Technol.
13
,
1
(
2006
).
4.
M.
Hasanzadeh
,
V.
Mottaghitalab
,
H.
Babaei
, and
M.
Rezaei
, “
The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics
,”
Composites, Part A
88
,
263
(
2016
).
5.
W.
Jiang
,
Y.
Sun
,
Y.
Xu
,
C.
Peng
,
X.
Gong
, and
Z.
Zhang
, “
Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine-water mixtures
,”
Rheol. Acta
49
,
1157
(
2010
).
6.
C. H.
Liu
and
D. J.
Pine
, “
Shear-induced gelation and fracture in micellar solutions
,”
Phys. Rev. Lett.
77
,
2121
(
1996
).
7.
M.
Takeda
,
T.
Kusano
,
T.
Matsunaga
,
H.
Endo
,
M.
Shibayama
, and
T.
Shikata
, “
Rheo-SANS studies on shear-thickening/thinning in aqueous rodlike micellar solutions
,”
Langmuir
27
,
1731
(
2011
).
8.
J.
Ding
,
P.
Tracey
,
W.
Li
,
G.
Peng
,
P. G.
Whitten
, and
G. G.
Wallace
, “
Review on shear thickening fluids and applications
,”
Text. Light Ind. Sci. Technol.
2
,
161
(
2013
).
9.
S.
Gürgen
,
M. C.
Kuşhan
, and
W.
Li
, “
Shear thickening fluids in protective applications: A review
,”
Prog. Polym. Sci.
75
,
48
(
2017
).
10.
Y. F.
Lee
,
Y.
Luo
,
T.
Bai
,
C.
Velez
,
S. C.
Brown
, and
N. J.
Wagner
, “
Microstructure and rheology of shear-thickening colloidal suspensions with varying interparticle friction: Comparison of experiment with theory and simulation models
,”
Phys. Fluids
33
,
033316
(
2021
).
11.
C.
Fischer
,
A.
Bennani
,
V.
Michaud
,
E.
Jacquelin
, and
J. A. E.
Månson
, “
Structural damping of model sandwich structures using tailored shear thickening fluid compositions
,”
Smart Mater. Struct.
19
,
035017
(
2010
).
12.
K.
Lin
,
A.
Zhou
,
H.
Liu
,
Y.
Liu
, and
C.
Huang
, “
Shear thickening fluid damper and its application to vibration mitigation of stay cable
,”
Structures
26
,
214
(
2020
).
13.
J.
Qin
,
B.
Guo
,
L.
Zhang
,
T.
Wang
,
G.
Zhang
, and
X.
Shi
, “
Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid
,”
Composites, Part B
183
,
107686
(
2020
).
14.
J.
Warren
,
M.
Cole
,
S.
Offenberger
,
K. R.
Kota
,
T. E.
Lacy
,
H.
Toghiani
,
M.
Burchell
,
S.
Kundu
, and
C. U.
Pittman
, “
Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid
,”
Int. J. Impact Eng.
150
,
103803
(
2021
).
15.
X.
Wang
,
A.
Lu
, and
K.
Wang
, “
Effect of interparticle action on shear thickening behavior of cementitious composites: Modeling and experimental validation
,”
J. Sustainable Cem. Mater.
9
,
78
(
2020
).
16.
F.
Jiang
and
W.
Pu
, “
Salt induced shear thickening behavior of a hydrophobic association polymer and its potential in enhanced oil recovery
,”
J. Mater. Sci.
55
,
3130
(
2020
).
17.
T.
Shende
,
V. J.
Niasar
, and
M.
Babaei
, “
An empirical equation for shear viscosity of shear thickening fluids
,”
J. Mol. Liq.
325
,
115220
(
2021
).
18.
F. J.
Galindo-Rosales
,
F. J.
Rubio-Hernández
, and
A.
Sevilla
, “
An apparent viscosity function for shear thickening fluids
,”
J. Non-Newtonian Fluid Mech.
166
,
321
(
2011
).
19.
F.
Bautista
,
J. M.
De Santos
,
J. E.
Puig
, and
O.
Manero
, “
Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model
,”
J. Non-Newtonian Fluid Mech.
80
,
93
(
1999
).
20.
A. G.
Fredrickson
, “
A model for the thixotropy of suspensions
,”
AIChE J.
16
,
436
(
1970
).
21.
O.
Manero
,
J. H.
Pérez-López
,
J. I.
Escalante
,
J. E.
Puig
, and
F.
Bautista
, “
A thermodynamic approach to rheology of complex fluids: The generalized BMP model
,”
J. Non-Newtonian Fluid Mech.
146
,
22
(
2007
).
22.
G.
Landázuri
,
E. R.
Macías
,
J. P.
García-Sandoval
,
E.
Hernández
,
O.
Manero
,
J. E.
Puig
, and
F.
Bautista
, “
On the modelling of the shear thickening behavior in micellar solutions
,”
Rheol. Acta
55
,
547
(
2016
).
23.
D.
Jou
,
J.
Casas-Vázquez
, and
M.
Criado-Sancho
, “
Thermodynamics of fluids under flow
,” in
Thermodynamics of Fluids under Flow
, 2nd ed. (
Springer
,
2011
).
24.
S.
Tamano
,
S.
Hamanaka
,
Y.
Nakano
,
Y.
Morinishi
, and
T.
Yamada
, “
Rheological modeling of both shear-thickening and thinning behaviors through constitutive equations
,”
J. Non-Newtonian Fluid Mech.
283
,
104339
(
2020
).
25.
B.
Jiang
,
D. J.
Keffer
,
B. J.
Edwards
, and
J. N.
Allred
, “
Modeling shear thickening in dilute polymer solutions: Temperature, concentration, and molecular weight dependencies
,”
J. Appl. Polym. Sci.
90
,
2997
(
2003
).
26.
B. J.
Edwards
,
D. J.
Keffer
, and
C. W.
Reneau
, “
An examination of the shear-thickening behavior of high molecular weight polymers dissolved in low-viscosity Newtonian solvents
,”
J. Appl. Polym. Sci.
85
,
1714
(
2002
).
27.
B. J.
Edwards
,
A. N.
Beris
, and
V. G.
Mavrantzas
, “
A Model with Two Coupled Maxwell Modes
,”
J. Rheol.
40
,
917
(
1996
).
28.
A. N.
Beris
and
B. J.
Edwards
, “
Thermodynamics of flowing systems: With internal microstructure
,” in
Thermodynamics of Flowing Systems: With Internal Microstructure
(
Oxford University Press
,
New York
,
1994
).
29.
H. C.
Öttinger
, “
Beyond equilibrium thermodynamics
,” in
Beyond Equilibrium Thermodynamics
(
John Wiley and Sons
,
2005
).
30.
H. C.
Öttinger
and
M.
Grmela
, “
Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
,”
Phys. Rev. E
56
,
6633
(
1997
).
31.
M.
Grmela
and
H. C.
Öttinger
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
,
6620
(
1997
).
32.
P. S.
Stephanou
,
C.
Baig
, and
V. G.
Mavrantzas
, “
A generalized differential constitutive equation for polymer melts based on principles of nonequilibrium thermodynamics
,”
J. Rheol.
53
,
309
(
2009
).
33.
P. S.
Stephanou
,
I. C.
Tsimouri
, and
V. G.
Mavrantzas
, “
Simple, accurate and user-friendly differential constitutive model for the rheology of entangled polymer melts and solutions from nonequilibrium thermodynamics
,”
Materials
13
,
2867
(
2020
).
34.
P. S.
Stephanou
,
V. G.
Mavrantzas
, and
G. C.
Georgiou
, “
Continuum model for the phase behavior, microstructure, and rheology of unentangled polymer nanocomposite melts
,”
Macromolecules
47
,
4493
(
2014
).
35.
P. S.
Stephanou
, “
How the flow affects the phase behaviour and microstructure of polymer nanocomposites
,”
J. Chem. Phys.
142
,
064901
(
2015
).
36.
N.
Germann
,
L. P.
Cook
, and
A. N.
Beris
, “
Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
196
,
51
(
2013
).
37.
P. S.
Stephanou
,
I. C.
Tsimouri
, and
V. G.
Mavrantzas
, “
Two-species models for the rheology of associative polymer solutions: Derivation from nonequilibrium thermodynamics
,”
J. Rheol.
64
,
1003
(
2020
).
38.
I. C.
Tsimouri
,
P. S.
Stephanou
, and
V. G.
Mavrantzas
, “
A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics
,”
Phys. Fluids
30
,
030710
(
2018
).
39.
P. S.
Stephanou
, “
A constitutive hemorheological model addressing both the deformability and aggregation of red blood cells
,”
Phys. Fluids
32
,
103103
(
2020
).
40.
P. S.
Stephanou
and
I. C.
Tsimouri
, “
A constitutive hemorheological model addressing the deformability of red blood cells in ringer solutions
,”
Soft Matter
16
,
7585
(
2020
).
41.
P. S.
Stephanou
, “
The rheology of drilling fluids from a non-equilibrium thermodynamics perspective
,”
J. Pet. Sci. Eng.
165
,
1010
(
2018
).
42.
P. S.
Stephanou
and
G. G.
Georgiou
, “
A nonequilibrium thermodynamics perspective of thixotropy
,”
J. Chem. Phys.
149
,
244902
(
2018
).
43.
P. S.
Stephanou
, “
Erratum: ‘A constitutive hemorheological model addressing both the deformability and aggregation of red blood cells’ [Phys. Fluids 32, 103103 (2020)]
,”
Phys. Fluids
33
,
039901
(
2021
).
44.
J.
Castillo-Tejas
and
O.
Manero
, “
Molecular dynamics of shear banding flow in associative polymers solutions: Effect of sticker groups location
,”
Rheol. Acta
(
2021
).
45.
S. D.
Peroukidis
,
D. G.
Tsalikis
,
M. G.
Noro
,
I. P.
Stott
, and
V. G.
Mavrantzas
, “
Quantitative prediction of the structure and viscosity of aqueous micellar solutions of ionic surfactants: A combined approach based on coarse-grained MARTINI simulations followed by reverse-mapped all-atom molecular dynamics simulations
,”
J. Chem. Theory Comput.
16
,
3363
(
2020
).
46.
M.
Kröger
and
M.
Hütter
, “
Automated symbolic calculations in nonequilibrium thermodynamics
,”
Comput. Phys. Commun.
181
,
2149
2157
(
2010
).
47.
P. S.
Stephanou
,
I. C.
Tsimouri
, and
V. G.
Mavrantzas
, “
Flow-induced orientation and stretching of entangled polymers in the framework of nonequilibrium thermodynamics
,”
Macromolecules
49
,
3161
(
2016
).
48.
R. G.
Larson
, “
The structure and rheology of complex fluids
,” in
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
49.
J. M.
Kim
,
P. S.
Stephanou
,
B. J.
Edwards
, and
B.
Khomami
, “
A mean-field anisotropic diffusion model for unentangled polymeric liquids and semi-dilute solutions: Model development and comparison with experimental and simulation data
,”
J. Non-Newtonian Fluid Mech.
166
,
593
(
2011
).
50.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
(
1982
).
51.
D. G.
Tsalikis
,
T.
Koukoulas
,
V. G.
Mavrantzas
,
R.
Pasquino
,
D.
Vlassopoulos
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
M.
Monkenbusch
, and
D.
Richter
, “
Microscopic structure, conformation, and dynamics of ring and linear poly(ethylene oxide) melts from detailed atomistic molecular dynamics simulations: Dependence on chain length and direct comparison with experimental data
,”
Macromolecules
50
,
2565
(
2017
).
52.
B. J.
Edwards
,
A. N.
Beris
, and
H. C.
Öttinger
, “
An analysis of single and double generator thermodynamic formalisms for complex fluids. II. The microscopic description
,”
J. Non-Equilib. Thermodyn.
23
,
334
(
1998
), available at https://www.degruyter.com/document/doi/10.1515/jnet.1998.23.4.334/html.
53.
B. J.
Edwards
, “
An analysis of single and double generator thermodynamic formalisms for the macroscopic description of complex fluids
,”
J. Non-Equilib. Thermodyn.
23
,
301
(
1998
), available at https://www.degruyter.com/document/doi/10.1515/jnet.1998.23.4.301/html.
54.
D.
Jou
and
J.
Casas-Vázquez
, “
Extended irreversible thermodynamics and its relation with other continuum approaches
,”
J. Non-Newtonian Fluid Mech.
96
,
77
(
2001
).
55.
S.
Tamano
,
Y.
Ohashi
, and
Y.
Morinishi
, “
Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability
,”
Phys. Fluids
29
,
053104
(
2017
).
56.
A.
Bosco
,
V.
Calado
, and
J.
Maia
, “
Rheological parameters of shear-thickening fluids using an experimental design
,”
Mater. Res.
22
,
e20180631
(
2019
).
57.
S.
Dutta
and
M. D.
Graham
, “
Mechanistic constitutive model for wormlike micelle solutions with flow-induced structure formation
,”
J. Non-Newtonian Fluid Mech.
251
,
97
(
2018
).

Supplementary Material

You do not currently have access to this content.