Viscous fluid exiting a long horizontal circular pipe develops a complex structure comprising a primary jet above and a smaller secondary jet below with a thin fluid curtain connecting them. We present here a combined experimental, theoretical, and numerical study of this “Torricelli's curtain” phenomenon, focusing on the factors that control its morphology. The dimensional parameters that define the problem are the pipe radius a; the mean exit velocity U of the fluid; the gravitational acceleration g; and the fluid's density ρ, kinematic viscosity ν, and coefficient of surface tension γ. Rescaling of experimentally measured trajectories of the primary and secondary jets using a for the vertical coordinate and LD=U(a/g)1/2 for the horizontal coordinate x collapses the data onto universal curves for x<10LD. We propose a theoretical model for the curtain in which particle trajectories result from the composition of two motions: a horizontal component corresponding to the evolving axial velocity profile of an axisymmetric viscous jet and a vertical component due to free fall under gravity. The model predicts well the trajectory of the primary jet, but somewhat less well that of the secondary jet. We suggest that the remaining discrepancy may be explained by surface tension-driven (Taylor–Culick) retraction of the secondary jet. Finally, direct numerical simulation reveals recirculating “Dean” vortices in vertical sections of the primary jet, placing Torricelli's curtain firmly within the context of flow in curved pipes.

1.
E.
Torricelli
,
Opere Geometrica
(
Florentinae typis A. Masse and L. de Landis
,
1644
).
2.
Y. G.
Dorfman
, “
Life and physical discoveries of Torricelli
,”
Sov. Phys. Usp.
1
,
276
286
(
1958
).
3.
S. L.
Goren
, “
Development of the boundary layer at a free surface from a uniform shear flow
,”
J. Fluid Mech.
25
,
87
95
(
1966
).
4.
S. L.
Goren
and
S.
Wronski
, “
The shape of low-speed capillary jets of Newtonian liquids
,”
J. Fluid Mech.
25
,
185
198
(
1966
).
5.
J. L.
Duda
and
J. S.
Vrentas
, “
Fluid mechanics of laminar liquid jets
,”
Chem. Eng. Sci.
22
,
855
869
(
1967
).
6.
T.
Tsukiji
and
K.
Takahashi
, “
Numerical analysis of an axisymmetric jet using a streamline coordinate system
,”
JSME Int. J.
30
,
1406
1413
(
1987
).
7.
C.
Philippe
and
P.
Dumargue
, “
Etude de l'établissement d'un jet liquide laminaire émergeant d'une conduite cylindrique verticale semi-infinie et soumis à l'influence de la gravité
,”
J. Appl. Math. Phys. (ZAMP)
42
,
227
242
(
1991
).
8.
H.
Oguz
, “
On the relaxation of laminar jets at high Reynolds numbers
,”
Phys. Fluids
10
,
361
367
(
1998
).
9.
A.
Sevilla
, “
The effect of viscous relaxation on the spatiotemporal stability of capillary jets
,”
J. Fluid Mech.
684
,
204
226
(
2011
).
10.
J. M.
Gordillo
,
M.
Pérez-Saborid
, and
A. M.
Ganán-Calvo
, “
Linear stability of co-flowing liquid-gas jets
,”
J. Fluid Mech.
448
,
23
51
(
2001
).
11.
D. R.
Brown
, “
A study of the behaviour of a thin sheet of moving liquid
,”
J. Fluid Mech.
10
,
297
305
(
1961
).
12.
T.
Erneux
and
S. H.
Davis
, “
Nonlinear rupture of free films
,”
Phys. Fluids
5
,
1117
1122
(
1993
).
13.
M. P.
Brenner
and
D.
Gueyffier
, “
On the bursting of viscous films
,”
Phys. Fluids
11
,
737
739
(
1999
).
14.
G. I.
Taylor
, “
The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets
,”
Proc. R. Soc. London, Ser. A
253
,
313
321
(
1959
).
15.
F. E. C.
Culick
, “
Comments on a ruptured soap film
,”
J. Appl. Phys.
31
,
1128
1129
(
1960
).
16.
J. B.
Keller
, “
Breaking of liquid films and threads
,”
Phys. Fluids
26
,
3451
3453
(
1983
).
17.
J. B.
Keller
,
A.
King
, and
L.
Ting
, “
Blob formation
,”
Phys. Fluids
7
,
226
228
(
1995
).
18.
M.
Song
and
G.
Tryggvason
, “
The formation of thick borders on an initially stationary fluid sheet
,”
Phys. Fluids
11
,
2487
2493
(
1999
).
19.
G.
Sünderhauf
,
H.
Raszillier
, and
F.
Durst
, “
The retraction of the edge of a planar liquid sheet
,”
Phys. Fluids
14
,
198
208
(
2002
).
20.
J. S.
Roche
,
N. L.
Grand
,
P.
Brunet
,
L.
Lebon
, and
L.
Limat
, “
Perturbations on a liquid curtain near break-up: Wakes and free edges
,”
Phys. Fluids
18
,
082101
(
2006
).
21.
N.
Savva
and
J. W. M.
Bush
, “
Viscous sheet retraction
,”
J. Fluid Mech.
626
,
211
240
(
2009
).
22.
L.
Gordillo
,
G.
Agbaglah
,
L.
Duchemin
, and
C.
Josserand
, “
Asymptotic behavior of a retracting two-dimensional fluid sheet
,”
Phys. Fluids
23
,
122101
(
2011
).
23.
E. S.
Benilov
, “
Paradoxical predictions of liquid curtains with surface tension
,”
J. Fluid Mech.
917
,
A21
(
2021
).
24.
H. O.
Anwar
, “
Measurements on horizontal buoyant jets in calm ambient fluid, with theory based on variable coefficient of entrainment determined experimentally
,”
La houille blanche
58
,
311
319
(
1972
).
25.
S.
Satyanarayana
and
Y.
Jaluria
, “
A study of laminar buoyant jets discharged at an inclination to the vertical buoyancy force
,”
Int. J. Heat Mass Transfer
25
,
1569
1577
(
1982
).
26.
J. H.
Arakeri
,
D.
Das
, and
J.
Srinivasan
, “
Bifurcation in a buoyant horizontal laminar jet
,”
J. Fluid Mech.
412
,
61
73
(
2000
).
27.
G.
Querzoli
and
A.
Cenedese
, “
On the structure of a laminar buoyant jet released horizontally
,”
J. Hydraul. Res.
43
,
71
85
(
2005
).
28.
W.
Deri
,
A.
Monavon
,
E.
Studer
,
D.
Abdo
, and
I.
Tkatschenko
, “
Early development of the veil-shaped secondary flow in horizontal buoyant jets
,”
Phys. Fluids
23
,
073604
(
2011
).
29.
D.
Shao
,
D.
Huang
,
B.
Jiang
, and
A. W.-K.
Law
, “
Flow patterns and mixing characteristics of horizontal buoyant jets at low and moderate Reynolds numbers
,”
Int. J. Heat Mass Transfer
105
,
831
846
(
2017
).
30.
J. W. M.
Bush
and
A. E.
Hasha
, “
On the collision of laminar jets: Fluid chains and fishbones
,”
J. Fluid Mech.
511
,
285
310
(
2004
).
31.
S.
Dighe
and
H.
Gadgil
, “
On the nature of instabilities in externally perturbed liquid sheets
,”
J. Fluid Mech.
916
,
A57
(
2021
).
32.
S. A.
Berger
,
L.
Talbot
, and
L.-S.
Yao
, “
Flow in curved pipes
,”
Annu. Rev. Fluid Mech.
15
,
461
512
(
1983
).
33.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
,
572
600
(
2003
).
34.
W. R.
Dean
, “
Note on the motion of fluid in a curved pipe
,”
Philos. Mag.
4
,
208
223
(
1927
).
35.
W. R.
Dean
, “
The stream-line motion of fluid in a curved pipe
,”
Philos. Mag.
5
,
673
693
(
1928
).
36.
N.
Villeneuve
,
D. R.
Neuville
,
P.
Boivin
,
P.
Bachèlery
, and
P.
Richet
, “
Magma crystallization and viscosity: A study of molten basalts from the Piton de la Fournaise volcano (La Réunion island)
,”
Chem. Geol.
256
,
242
251
(
2008
).
37.
D.
Walker
and
O.
Mullins
, “
Surface tension of natural silicate melts from 1,200 °C–1,500 °C and implications for melt structure
,”
Contrib. Mineral. Petrol.
76
,
455
462
(
1981
).
You do not currently have access to this content.