We analyze the flow of a planar gas jet impinging on a thin film dragged by a vertical moving wall. In the coating industry, this configuration is known as jet wiping, a process in which impinging jets control the thickness of liquid coatings on flat plates withdrawn vertically from a coating bath. We present three-dimensional (3D) two-phase flow simulations combining large eddy simulation (LES) and volume of fluid techniques. Three wiping configurations are simulated and the results are validated with experimental data from previous works. Multiscale modal analysis is used to analyze the dynamic interaction between the gas flow and the liquid film. In particular, we present a combination of multiscale Proper Orthogonal Decomposition (mPOD) and correlation analysis. The mPOD is used to identify the dominant traveling wave pattern in the liquid film flow, and the temporal structures are used to determine the most correlated flow features in the gas jet. This allows for revealing a two-dimensional mechanism for wave formation in the liquid coat. Finally, we use the numerical results to analyze the validity of some of the critical assumptions underpinning the derivation of integral film models of jet wiping.

1.
E. D.
Cohen
and
E. B.
Gutoff
,
Modern Coating and Drying Technology
, 1st ed. (
Wiley
,
1992
).
2.
Technical Association of the Pulp and Paper Industry
,
Air Knife Coating 1981, Atlanta, GA, November 16–17, Seminar Notes of the Technical Association of the Pulp and Paper Industry
(
TAPPI Press
,
1981
).
3.
J. A.
Thornton
and
H. F.
Graff
, “
An analytical description of the jet finishing process for hot-dip metallic coatings on strip
,”
Metall. Trans. B
7
,
607
618
(
1976
).
4.
E. O.
Tuck
, “
Continuous coating with gravity and jet stripping
,”
Phys. Fluids
26
,
2352
(
1983
).
5.
C. H.
Ellen
and
C. V.
Tu
, “
An analysis of jet stripping of liquid coatings
,”
J. Fluids Eng.
106
,
399
(
1984
).
6.
J.-M.
Buchlin
, “
Modelling of gas jet wiping in thin liquid films and coating processes
,” in
VKI Lecture Series
(
Rhode-Saint-Genese
,
1997
).
7.
A.
Gosset
and
J. M.
Buchlin
, “
Jet wiping in hot-dip galvanization
,”
J. Fluids Eng., Trans. ASME
129
,
466
475
(
2007
).
8.
K.
Myrillas
,
A.
Gosset
,
P.
Rambaud
,
M.
Anderhuber
,
J. M.
Mataigne
, and
J. M.
Buchlin
, “
Technique for delaying splashing in jet wiping process
,”
Chem. Eng. Process.: Process Intensif.
50
,
466
470
(
2011
).
9.
K.
Myrillas
, “
Experimental and numerical investigation of gas jet and liquid film interaction
,” Ph.D. thesis (
Université Libre de Bruxelles
,
2011
).
10.
K.
Myrillas
,
P.
Rambaud
,
J. M.
Mataigne
,
P.
Gardin
,
S.
Vincent
, and
J. M.
Buchlin
, “
Numerical modeling of gas-jet wiping process
,”
Chem. Eng. Process.: Process Intensif.
68
,
26
31
(
2013
).
11.
W.
Eßl
,
C.
Pfeiler
,
G.
Reiss
,
W.
Ecker
,
C. K.
Riener
, and
G.
Angeli
, “
LES-VOF simulation and POD analysis of the gas jet wiping process in continuous galvanizing lines
,”
Steel Res. Int.
89
,
1700362
(
2018
).
12.
A.
Gosset
,
M. A.
Mendez
, and
J. M.
Buchlin
, “
An experimental analysis of the stability of the jet wiping process: Part I – Characterization of the coating uniformity
,”
Exp. Therm. Fluid Sci.
103
,
51
65
(
2019
).
13.
M. A.
Mendez
,
A.
Gosset
, and
J. M.
Buchlin
, “
Experimental analysis of the stability of the jet wiping process, part II: Multiscale modal analysis of the gas jet-liquid film interaction
,”
Exp. Therm. Fluid Sci.
106
,
48
67
(
2019
).
14.
M. A.
Mendez
,
M. T.
Scelzo
, and
J. M.
Buchlin
, “
Multiscale modal analysis of an oscillating impinging gas jet
,”
Exp. Therm. Fluid Sci.
91
,
256
276
(
2018
).
15.
W.
Aniszewski
,
Y.
Saade
,
S.
Zaleski
, and
S.
Popinet
, “
Planar jet stripping of liquid coatings: Numerical studies
,”
Int. J. Multiphase Flow
132
,
103399
(
2020
).
16.
M.
Mendez
,
A.
Gosset
,
B.
Scheid
,
M.
Balabane
, and
J.-M.
Buchlin
, “
Dynamics of the jet wiping process via integral models
,”
J. Fluid Mech.
911
,
A47
(
2021
).
17.
S.
Beltaos
and
N.
Rajaratnam
, “
Plane turbulent impinging jets
,”
J. Hydraulic Res.
11
,
29
59
(
1973
).
18.
C.
Tu
and
D.
Wood
, “
Wall pressure and shear stress measurements beneath an impinging jet
,”
Exp. Therm. Fluid Sci.
13
,
364
373
(
1996
).
19.
P.
Naphade
,
A.
Mukhopadhyay
, and
S.
Chakrabarti
, “
Mathematical modelling of jet finishing process for hot-dip zinc coatings on steel strip
,”
ISIJ Int.
45
,
209
213
(
2005
).
20.
E.
Elsaadawy
,
G.
Hanumanth
,
A.
Balthazaar
,
J.
McDermid
,
A.
Hrymak
, and
J.
Forbes
, “
Coating weight model for the continuous hot-dip galvanizing process
,”
Metall. Mater. Trans. B
38
,
413
424
(
2007
).
21.
A.
Arote
,
M.
Bade
, and
J.
Banerjee
, “
On coherent structures of spatially oscillating planar liquid jet developing in a quiescent atmosphere
,”
Phys. Fluids
32
,
082111
(
2020
).
22.
M.
Chiatto
,
J. K.
Shang
,
L. D.
Luca
, and
F.
Grasso
, “
Insights into low Reynolds flow past finite curved cylinders
,”
Phys. Fluids
33
,
035150
(
2021
).
23.
C. W.
Rowley
and
S. T.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
(
2017
).
24.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
(
2017
).
25.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
26.
M. A.
Mendez
,
M.
Balabane
, and
J. M.
Buchlin
, “
Multi-scale proper orthogonal decomposition of complex fluid flows
,”
J. Fluid Mech.
870
,
988
1036
(
2019
).
27.
M. A.
Mendez
,
M.
Balabane
, and
J. M.
Buchlin
, “
Multi-scale proper orthogonal decomposition (mPOD)
,”
AIP Conf. Proc.
1978
(
1
),
060018
(
2018
).
28.
M. A.
Mendez
,
D.
Hess
,
B. B.
Watz
, and
J.-M.
Buchlin
, “
Multiscale proper orthogonal decomposition (mPOD) of TR-PIV data—a case study on stationary and transient cylinder wake flows
,”
Meas. Sci. Technol.
31
,
094014
(
2020
).
29.
L.
Sirovich
, “
Analysis of turbulent flows by means of the empirical eigenfunctions
,”
Fluid Dyn. Res.
8
,
85
100
(
1991
).
30.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
1996
).
31.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
32.
C.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
(
2009
).
33.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
(
2018
).
34.
M.
Sieber
,
C. O.
Paschereit
, and
K.
Oberleithner
, “
Spectral proper orthogonal decomposition
,”
J. Fluid Mech.
792
,
798
(
2016
).
35.
J.
Borée
, “
Extended proper orthogonal decomposition: A tool to analyse correlated events in turbulent flows
,”
Exp. Fluids
35
,
188
192
(
2003
).
36.
M. A.
Mendez
, “
Dynamics of gas jet impinging on falling liquid films
,” Ph.D. thesis (
Université Libre de Bruxelles
,
2018
).
37.
B.
Derjaguin
, “
On the thickness of the liquid film adhering to the walls of a vessel after emptying
,”
Prog. Surf. Sci.
43
,
134
137
(
1993
).
38.
E.
Rio
and
F.
Boulogne
, “
Withdrawing a solid from a bath: How much liquid is coated?
,”
Adv. Colloid Interface Sci.
247
,
100
114
(
2017
).
39.
C.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
40.
W.
Aniszewski
,
T.
Arrufat
,
M.
Crialesi-Esposito
,
S.
Dabiri
,
D.
Fuster
,
Y.
Ling
,
J.
Lu
,
L.
Malan
,
S.
Pal
,
R.
Scardovelli
,
G.
Tryggvason
,
P.
Yecko
, and
S.
Zaleski
, “
PArallel, Robust, Interface Simulator (PARIS)
,”
Comput. Phys. Commun.
263
,
107849
(
2021
).
41.
S.
Márquez Damián
, “
An extended mixture model for the simultaneous treatment of short and long scale interfaces
,” Ph.D. thesis (
Universidad Nacional Del Litoral
,
2013
).
42.
W. F.
Noh
and
P.
Woodward
,
SLIC (Simple Line Interface Calculation
) (
Springer
,
Berlin, Heidelberg
,
1976
), pp.
330
340
.
43.
W. J.
Rider
and
D. B.
Kothe
, “
Reconstructing volume tracking
,”
J. Comput. Phys.
141
,
112
152
(
1998
).
44.
S. S.
Deshpande
,
L.
Anumolu
, and
M. F.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
,
014016
(
2012
).
45.
B. E.
Larsen
,
D. R.
Fuhrman
, and
J.
Roenby
, “
Performance of interFoam on the simulation of progressive waves
,”
Coastal Eng. J.
61
,
380
400
(
2019
), arXiv:1804.01158.
46.
J.
Brackbill
,
D.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
47.
W.
Fan
and
H.
Anglart
, “
varRhoTurbVOF: A new set of volume of fluid solvers for turbulent isothermal multiphase flows in OpenFOAM
,”
Comput. Phys. Commun.
247
,
106876
(
2020
).
48.
D.
Lakehal
, “
Status and future developments of Large-Eddy Simulation of turbulent multi-fluid flows (LEIS and LESS)
,”
Int. J. Multiphase Flow
104
,
322
337
(
2018
).
49.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
, 3rd ed. (
Springer
,
2005
), p.
587
.
50.
E.
Labourasse
,
D.
Lacanette
,
A.
Toutant
,
P.
Lubin
,
S.
Vincent
,
O.
Lebaigue
,
J.-P.
Caltagirone
, and
P.
Sagaut
, “
Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests
,”
Int. J. Multiphase Flow
33
,
1
39
(
2007
).
51.
P.
Liovic
and
D.
Lakehal
, “
Multi-physics treatment in the vicinity of arbitrarily deformable gas–liquid interfaces
,”
J. Comput. Phys.
222
,
504
535
(
2007
).
52.
A.
Toutant
,
M.
Chandesris
,
D.
Jamet
, and
O.
Lebaigue
, “
Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part 1: Theoretical development
,”
Int. J. Multiphase Flow
35
,
1100
1118
(
2009
).
53.
P.
Liovic
and
D.
Lakehal
, “
Subgrid-scale modelling of surface tension within interface tracking-based Large Eddy and interface simulation of 3D interfacial flows
,”
Comput. Fluids
63
,
27
46
(
2012
).
54.
S.
Ketterl
and
M.
Klein
, “
A-priori assessment of subgrid scale models for large-eddy simulation of multiphase primary breakup
,”
Comput. Fluids
165
,
64
77
(
2018
).
55.
L.
Jofre
,
M. S.
Dodd
,
J.
Grau
, and
R.
Torres
, “
Near-interface flow modeling in large-eddy simulation of two-phase turbulence
,”
Int. J. Multiphase Flow
132
,
103406
(
2020
).
56.
M.
Fulgosi
,
D.
Lakehal
,
S.
Banerjee
, and
V.
De Angelis
, “
Direct numerical simulation of turbulence in a sheared air–water flow with a deformable interface
,”
J. Fluid Mech.
482
,
319
345
(
2003
).
57.
A.
Toutant
,
E.
Labourasse
,
O.
Lebaigue
, and
O.
Simonin
, “
DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: A priori tests for LES two-phase flow modelling
,”
Comput. Fluids
37
,
877
886
(
2008
).
58.
S.
Vincent
,
J.
Larocque
,
D.
Lacanette
,
A.
Toutant
,
P.
Lubin
, and
P.
Sagaut
, “
Numerical simulation of phase separation and a priori two-phase LES filtering
,”
Comput. Fluids
37
,
898
906
(
2008
).
59.
D.
Lacanette
,
A.
Gosset
,
S.
Vincent
,
J.-M.
Buchlin
, and
E.
Arquis
, “
Macroscopic analysis of gas-jet wiping: Numerical simulation and experimental approach
,”
Phys. Fluids
18
,
042103
(
2006
).
60.
G. M.
Bianchi
,
F.
Minelli
,
R.
Scardovelli
, and
S.
Zaleski
, “
3D large scale simulation of the high-speed liquid jet atomization
,” in
SAE Technical Paper
(
SAE International
,
2007
).
61.
Z.
Rek
,
J.
Gregorc
,
M.
Bouaifi
, and
C.
Daniel
, “
Numerical simulation of gas jet in liquid crossflow with high mean jet to crossflow velocity ratio
,”
Chem. Eng. Sci.
172
,
667
676
(
2017
).
62.
M.
Herrmann
, “
A sub-grid surface dynamics model for sub-filter surface tension induced interface dynamics
,”
Computers Fluids
87
,
92
101
(
2013
).
63.
D.
Ninni
and
M. A.
Mendez
, “
MODULO: A software for multiscale proper orthogonal decomposition of data
,”
SoftwareX
12
,
100622
(
2020
).
64.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M. G.
Velarde
,
Falling Liquid Films
(
Springer
London
,
2012
).
65.
M. A.
Mendez
,
B.
Scheid
, and
J. M.
Buchlin
, “
Low Kapitza falling liquid films
,”
Chem. Eng. Sci.
170
,
122
(
2017
).
66.
V. Y.
Shkadov
, “
Wave-flow theory for a thin viscous liquid layer
,”
Fluid Dyn.
3
,
12
(
1971
).
67.
V. Y.
Shkadov
, “
Wave formation on surface of viscous liquid due to tangential stress
,”
Fluid Dyn.
5
,
473
(
1973
).
68.
A.
Gosset
, “
Study of the interaction between a gas flow and a liquid film entrained by a moving surface
,” Ph.D. thesis (
Université Libre de Bruxelles
,
2007
).
69.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
70.
S. E.
Orchard
, “
On surface levelling in viscous liquids and gels
,”
Appl. Sci. Res., Sect. A
11
,
451
464
(
1963
).
71.
D.
Arthurs
and
S.
Ziada
, “
Effect of nozzle thickness on the self-excited impinging planar jet
,”
J. Fluids Struct.
44
,
1
(
2014
).
72.
M. H.
Eres
,
D. E.
Weidner
, and
L. W.
Schwartz
, “
Three-dimensional direct numerical simulation of surface-tension-gradient effects on the leveling of an evaporating multicomponent fluid
,”
Langmuir
15
,
1859
1871
(
1999
).
You do not currently have access to this content.