The single-phase flow and droplet flow are investigated in a rectangular microchannel with a T-junction, through experiments and simulations to improve the understanding of a droplet flow and its effect on overall flow in channels with junctions. Droplet behavior can be divided into three modes: flow into the side branch, a split at the junction, and flow into the downstream channel. In branches of the junction, the flow rate ratio and the pressure difference are affected by droplets with the same flow behavior flowing in the junction. The change in the volumetric flow rate ratio and pressure difference between two channels also depend on droplet size and flow conditions. Furthermore, the length of the droplet affects whether the droplet splits at the junction, and this behavior can be documented by a power law relationship between the capillary number Ca and droplet length.

1.
J.
Shaikh
,
N. D.
Patil
,
A.
Sharma
 et al, “
Numerical simulations and experiments on droplet coalescence dynamics over a liquid–air interface: Mechanism and effect of droplet-size/surface-tension
,”
SN Appl. Sci.
3
,
1
(
2021
).
2.
J.
Wang
,
C.
Shao
,
Y.
Wang
 et al, “
Microfluidics for medical additive manufacturing
,”
Engineering
6
,
1244
(
2020
).
3.
J.
Chaudhuri
and
D.
Bandyopadhyay
, “
A coupled continuum-statistical model to predict interfacial deformation under an external field
,”
J. Colloid Interface Sci.
587
,
864
(
2021
).
4.
H.-Y.
Peng
,
W.
Wang
,
R.
Xie
 et al, “
Mesoscale regulation of droplet templates to tailor microparticle structures and functions
,”
Particuology
48
,
74
(
2020
).
5.
X.
Chen
,
A.
Brukson
, and
C. L.
Ren
, “
A simple droplet merger design for controlled reaction volumes
,”
Microfluid. Nanofluid.
21
,
34
(
2017
).
6.
W.
Haselmayr
,
M.
Hamidovic
,
A.
Grimmer
, and
R.
Wille
, “
Fast and flexible drug screening using a pure hydrodynamic droplet control
,” in
European Conference on Microfluidics
(
2018
).
7.
D.
Zaremba
,
S.
Blonski
,
M.
Jachimek
,
M. J.
Marijnissen
,
S.
Jakiela
, and
P. M.
Korczyk
, “
Investigations of modular microfluidic geometries for passive manipulations on droplets
,”
Bull. Polish Acad. Sci.
66
,
139
149
(
2018
).
8.
O.
Cybulski
and
P.
Garstecki
, “
Dynamic memory in a microfluidic system of droplets traveling through a simple network of microchannels
,”
Lab Chip
10
,
484
(
2010
).
9.
J. Y.
Moon
,
S.
Kondaraju
,
W.
Choi
 et al, “
Lattice Boltzmann-immersed boundary approach for vesicle navigation in microfluidic channel networks
,”
Microfluid. Nanofluid.
17
,
1061
(
2014
).
10.
V.
Labrot
,
M.
Schindler
,
P.
Guillot
 et al, “
Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks
,”
Biomicrofluidics
3
,
012804
(
2009
).
11.
W.
Choi
,
M.
Hashimoto
,
A. K.
Ellerbee
 et al, “
Bubbles navigating through networks of microchannels
,”
Lab Chip
11
,
3970
(
2011
).
12.
G.
Cristobal
,
J.-P.
Benoit
,
M.
Joanicot
 et al, “
Microfluidic bypass for efficient passive regulation of droplet traffic at a junction
,”
Appl. Phys. Lett.
89
,
034104
(
2006
).
13.
D.
Zaremba
,
S.
Blonski
,
M. J.
Marijnissen
 et al, “
Fixing the direction of droplets in a bifurcating microfluidic junction
,”
Microfluid. Nanofluid.
23
,
1
(
2019
).
14.
S. S.
Bithi
,
M.
Nekouei
, and
S. A.
Vanapalli
, “
Bistability in the hydrodynamic resistance of a drop trapped at a microcavity junction
,”
Microfluid. Nanofluid.
21
,
1
(
2017
).
15.
M.
Prakash
and
N.
Gershenfeld
, “
Microfluidic bubble logic
,”
Science
315
,
832
(
2007
).
16.
Z.
Liu
,
J.
Zhao
,
Y.
Pang
 et al, “
Generation of droplets in the T-junction with a constriction microchannel
,”
Microfluid. Nanofluid.
22
,
1
(
2018
).
17.
M.
Nekouei
and
S. A.
Vanapalli
, “
Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size
,”
Phys. Fluids
29
,
032007
(
2017
).
18.
Y.
Pang
,
X.
Wang
, and
Z.
Liu
, “
Study of droplet flow in a T-shape microchannel with bottom wall fluctuation
,”
Acta Mech. Sin.
34
,
632
(
2018
).
19.
H.
Wong
,
C. J.
Radke
, and
S.
Morris
, “
The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow
,”
J. Fluid Mech.
292
,
95
(
1995
).
20.
D.
Ma
,
D.
Liang
,
C.
Zhu
 et al, “
The breakup dynamics and mechanism of viscous droplets in Y-shaped microchannels
,”
Chem. Eng. Sci.
231
,
116300
(
2021
).
21.
F.
Jousse
,
R.
Farr
,
D. R.
Link
 et al, “
Bifurcation of droplet flows within capillaries
,”
Phys. Rev. E
74
,
036311
(
2006
).
22.
T.
Fu
,
Y.
Ma
,
D.
Funfschilling
 et al, “
Dynamics of bubble breakup in a microfluidic T-junction divergence
,”
Chem. Eng. Sci.
66
,
4184
(
2011
).
23.
Y.
Chen
and
Z.
Deng
, “
Hydrodynamics of a droplet passing through a microfluidic T-junction
,”
J. Fluid Mech.
819
,
401
(
2017
).
24.
A.
Carlson
,
M.
Do-Quang
, and
G.
Amberg
, “
Droplet dynamics in a bifurcating channel
,”
Int. J. Multiphase Flow
36
,
397
(
2010
).
25.
X.
Wang
,
Z.
Liu
, and
Y.
Pang
, “
Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations
,”
Chem. Eng. Sci.
197
,
258
(
2019
).
26.
A. M.
Leshansky
and
L. M.
Pismen
, “
Breakup of drops in a microfluidic T junction
,”
Phys. Fluids
21
,
023303
(
2009
).
27.
M. C.
Jullien
,
M. J.
Tsang Mui Ching
,
C.
Cohen
 et al, “
Droplet breakup in microfluidic T-junctions at small capillary numbers
,”
Phys. Fluids
21
,
072001
(
2009
).
28.
X.
Wang
,
C.
Zhu
,
T.
Fu
 et al, “
Critical lengths for the transition of bubble breakup in microfluidic T-junctions
,”
Chem. Eng. Sci.
111
,
244
(
2014
).

Supplementary Material

You do not currently have access to this content.