The dynamics of a droplet in oscillatory and pulsating flows of a Newtonian fluid in a microchannel has been studied numerically. The effects of oscillation frequency, surface tension, and channel flow rate have been explored by simulating the drop within a microchannel. These types of flows introduce new equilibrium positions for the drop compared to steady flows with similar conditions. The simulation results are very sensitive to the grid resolution due to the unsteady behavior of the base flow. Therefore, a set of fine grids have been used in this study to capture the physics of this problem more accurately. However, these fine grids make the computations significantly expensive. Therefore, a multifidelity Gaussian processes method with two levels of fidelity has been used to predict the results of the remaining fine-grid simulations along with their uncertainties based on their correlations with those of the coarse-grid cases over a wide range of input parameters.

1.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D. D.
Carlo
, “
Label-free cell separation and sorting in microfluidic systems
,”
Anal. Bioanal. Chem.
397
,
3249
(
2010
).
2.
M.
Toner
and
D.
Irimia
, “
Blood-on-a-chip
,”
Annu. Rev. Biomed. Eng.
7
,
77
(
2005
).
3.
D. R.
Gossett
,
H. T. K.
Tse
,
J. S.
Dudani
,
K.
Goda
,
T. A.
Woods
,
S. W.
Graves
, and
D. D.
Carlo
, “
Inertial manipulation and transfer of microparticles across laminar fluid streams
,”
Small
8
,
2757
(
2012
).
4.
A.
Karimi
,
S.
Yazdi
, and
A.
Ardekani
, “
Hydrodynamic mechanisms of cell and particle trapping in microfluidics
,”
Biomicrofluidics
7
,
021501
(
2013
).
5.
D. D.
Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
18892
(
2007
).
6.
H.
Zhao
,
E. S.
Shaqfeh
, and
V.
Narsimhan
, “
Shear-induced particle migration and margination in a cellular suspension
,”
Phys. Fluids
24
,
011902
(
2012
).
7.
R. L.
Marson
,
Y.
Huang
,
M.
Huang
,
T.
Fu
, and
R. G.
Larson
, “
Inertio-capillary cross-streamline drift of droplets in Poiseuille flow using dissipative particle dynamics simulations
,”
Soft Matter
14
,
2267
(
2018
).
8.
B. R.
Mutlu
,
J. F.
Edd
, and
M.
Toner
, “
Oscillatory inertial focusing in infinite microchannels
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
7682
(
2018
).
9.
H.
Lan
and
D. B.
Khismatullin
, “
A numerical study of the lateral migration and deformation of drops and leukocytes in a rectangular microchannel
,”
Int. J. Multiphase Flow
47
,
73
(
2012
).
10.
A.
Lafzi
,
A. H.
Raffiee
, and
S.
Dabiri
, “
Inertial migration of a deformable capsule in an oscillatory flow in a microchannel
,”
Phys. Rev. E
102
,
063110
(
2020
).
11.
P. G.
Erlandsson
and
N. D.
Robinson
, “
Electrolysis-reducing electrodes for electrokinetic devices
,”
Electrophoresis
32
,
784
(
2011
).
12.
K.
Chaudhury
,
S.
Mandal
, and
S.
Chakraborty
, “
Droplet migration characteristics in confined oscillatory microflows
,”
Phys. Rev. E
93
,
023106
(
2016
).
13.
S.
Pawłowska
,
P.
Nakielski
,
F.
Pierini
,
I. K.
Piechocka
,
K.
Zembrzycki
, and
T. A.
Kowalewski
, “
Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow
,”
PLoS One
12
,
e0187815
(
2017
).
14.
S.
Pawłowska
,
Institute of Fundamental Technological Research Polish of Academy Sciences
(
IPPT-PAN
,
2018
), Vol.
1
, see https://rcin.org.pl/Content/142950/WA727_178307_Pawlowska-Diffusion.pdf.
15.
L.
Zhu
,
J.
Rabault
, and
L.
Brandt
, “
The dynamics of a capsule in a wall-bounded oscillating shear flow
,”
Phys. Fluids
27
,
071902
(
2015
).
16.
K.
Sarkar
and
W. R.
Schowalter
, “
Deformation of a two-dimensional viscoelastic drop at non-zero Reynolds number in time-periodic extensional flows
,”
J. Non-Newtonian fluid Mech.
95
,
315
(
2000
).
17.
Y.
Zhang
,
Y.
Han
,
L.
Zhang
,
Q.
Chen
,
M.
Ding
, and
T.
Shi
, “
Dynamic mode of viscoelastic capsules in steady and oscillating shear flow
,”
Phys. Fluids
32
,
103310
(
2020
).
18.
Z.
Lu
,
E. D.
Dupuis
,
V. K.
Patel
,
A. M.
Momen
, and
S.
Shahab
, “
Ultrasonic oscillatory two-phase flow in microchannels
,”
Phys. Fluids
33
,
032003
(
2021
).
19.
P.
Perdikaris
,
M.
Raissi
,
A.
Damianou
,
N.
Lawrence
, and
G. E.
Karniadakis
, “
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
,”
Proc. R. Soc. A
473
,
20160751
(
2017
).
20.
H.
Babaee
,
P.
Perdikaris
,
C.
Chryssostomidis
, and
G.
Karniadakis
, “
Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations
,”
J. Fluid Mech.
809
,
895
(
2016
).
21.
S. O.
Unverdi
and
G.
Tryggvason
, “
A front-tracking method for viscous, incompressible, multi-fluid flows
,”
J. Comput. Phys.
100
,
25
(
1992
).
22.
S.
Dabiri
and
P.
Bhuvankar
, “
Scaling law for bubbles rising near vertical walls
,”
Phys. Fluids
28
,
062101
(
2016
).
23.
M.
Bayareh
,
A.
Doostmohammadi
,
S.
Dabiri
, and
A.
Ardekani
, “
On the rising motion of a drop in stratified fluids
,”
Phys. Fluids
25
,
103302
(
2013
).
24.
X.
Chen
,
J.
Lu
, and
G.
Tryggvason
, “
Numerical simulation of self-propelled non-equal sized droplets
,”
Phys. Fluids
31
,
052107
(
2019
).
25.
W.
Li
,
J.
Lu
,
G.
Tryggvason
, and
Y.
Zhang
, “
Numerical study of droplet motion on discontinuous wetting gradient surface with rough strip
,”
Phys. Fluids
33
,
012111
(
2021
).
26.
H.
Xu
and
B. F.
Bai
, “
Unsynchronized motion of inner and outer membranes of compound capsules in shear flow
,”
Phys. Fluids
32
,
127115
(
2020
).
27.
Z. Y.
Luo
,
X. L.
Shang
, and
B. F.
Bai
, “
Development of an impulsive model of dissociation in direct simulation Monte Carlo
,”
Phys. Fluids
31
,
087105
(
2019
).
28.
E. J.
Campbell
and
P.
Bagchi
, “
A computational model of amoeboid cell swimming
,”
Phys. Fluids
29
,
101902
(
2017
).
29.
B.
Dincau
,
E.
Dressaire
, and
A.
Sauret
, “
Pulsatile flow in microfluidic systems
,”
Small
16
,
1904032
(
2020
).
30.
D.-Y.
Pan
,
Y.-Q.
Lin
,
L.-X.
Zhang
, and
X.-M.
Shao
, “
Motion and deformation of immiscible droplet in plane Poiseuille flow at low Reynolds number
,”
J. Hydrodyn.
28
,
702
(
2016
).
31.
M.
Razi
and
M.
Pourghasemi
, “
Direct numerical simulation of deformable droplets motion with uncertain physical properties in macro and micro channels
,”
Comput. Fluids
154
,
200
(
2017
).
32.
M. C.
Kennedy
and
A.
O'Hagan
, “
Predicting the output from a complex computer code when fast approximations are available
,”
Biometrika
87
(
1
),
1
(
2000
).
33.
L.
Le Gratiet
and
J.
Garnier
, “
Recursive co-kriging model for design of computer experiments with multiple levels of fidelity
,”
Int. J. Uncertainty Quantif.
4
,
365
(
2014
).
34.
G.
Vishwanathan
and
G.
Juarez
, “
Generation and application of sub-kilohertz oscillatory flows in microchannels
,”
Microfluid. Nanofluid.
24
,
1
(
2020
).
35.
M. E.
Fay
,
D. R.
Myers
,
A.
Kumar
,
C. T.
Turbyfield
,
R.
Byler
,
K.
Crawford
,
R. G.
Mannino
,
A.
Laohapant
,
E. A.
Tyburski
,
Y.
Sakurai
 et al., “
Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
1987
(
2016
).
36.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N.-T.
Nguyen
,
M. E.
Warkiani
, and
W.
Li
, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab Chip
16
,
10
(
2016
).
37.
J.
Rivero-Rodriguez
and
B.
Scheid
, “
Bubble dynamics in microchannels: Inertial and capillary migration forces—Corrigendum
,”
J. Fluid Mech.
855
,
1242
(
2018
).
38.
K. W.
Seo
,
Y. J.
Kang
, and
S. J.
Lee
, “
Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids
,”
Phys. Fluids
26
,
063301
(
2014
).
39.
J. M.
Martel
and
M.
Toner
, “
Inertial focusing in microfluidics
,”
Annu. Rev. Biomed. Eng.
16
,
371
(
2014
).
40.
D.
Stoecklein
and
D. D.
Carlo
, “
Nonlinear microfluidics
,”
Anal. Chem.
91
,
296
(
2019
).
41.
B.
Ho
and
L.
Leal
, “
Inertial migration of rigid spheres in two-dimensional unidirectional flows
,”
J. Fluid Mech.
65
,
365
(
1974
).
42.
P.
Bagchi
and
S.
Balachandar
, “
Shear versus vortex-induced lift force on a rigid sphere at moderate Re
,”
J. Fluid Mech.
473
,
379
(
2002
).
43.
P.-H.
Chan
and
L.
Leal
, “
The motion of a deformable drop in a second-order fluid
,”
J. Fluid Mech.
92
,
131
(
1979
).
44.
C. A.
Stan
,
A. K.
Ellerbee
,
L.
Guglielmini
,
H. A.
Stone
, and
G. M.
Whitesides
, “
The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels
,”
Lab Chip
13
,
365
(
2013
).
45.
N.
Aggarwal
and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Fluid Mech.
584
,
1
(
2007
).
46.
P.
Hadikhani
,
S. M. H.
Hashemi
,
G.
Balestra
,
L.
Zhu
,
M. A.
Modestino
,
F.
Gallaire
, and
D.
Psaltis
, “
Inertial manipulation of bubbles in rectangular microfluidic channels
,”
Lab Chip
18
,
1035
(
2018
).
47.
S.
Mortazavi
and
G.
Tryggvason
, “
A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop
,”
J. Fluid Mech.
411
,
325
(
2000
).
48.
D. D.
Carlo
,
J. F.
Edd
,
K. J.
Humphry
,
H. A.
Stone
, and
M.
Toner
, “
Particle segregation and dynamics in confined flows
,”
Phys. Rev. Lett.
102
,
094503
(
2009
).
49.
V.
O'Brien
, “
Pulsatile fully developed flow in rectangular channels
,”
J. Franklin Inst.
300
,
225
(
1975
).
50.
M.
Karbaschi
,
A.
Javadi
,
D.
Bastani
, and
R.
Miller
, “
High frequency oscillatory flow in micro channels
,”
Colloids Surf., A
460
,
355
(
2014
).
51.
H.
Noguchi
, “
Dynamic modes of red blood cells in oscillatory shear flow
,”
Phys. Rev. E
81
,
061920
(
2010
).
52.
U.
Torres-Herrera
, “
Dynamic permeability of fluids in rectangular and square microchannels: Shift and coupling of viscoelastic bidimensional resonances
,”
Phys. Fluids
33
,
012016
(
2021
).
53.
M.
Zhao
and
P.
Bagchi
, “
Dynamics of microcapsules in oscillating shear flow
,”
Phys. Fluids
23
,
111901
(
2011
).
54.
T.
Inamuro
,
R.
Tomita
, and
F.
Ogino
, “
Lattice Boltzmann simulations of drop deformation and breakup in shear flows
,”
Int. J. Mod. Phys. B
17
,
21
(
2003
).
55.
D.
Alghalibi
,
M. E.
Rosti
, and
L.
Brandt
, “
Inertial migration of a deformable particle in pipe flow
,”
Phys. Rev. Fluids
4
,
104201
(
2019
).
56.
Q.
Wang
,
D.
Yuan
, and
W.
Li
, “
Analysis of hydrodynamic mechanism on particles focusing in micro-channel flows
,”
Micromachines
8
,
197
(
2017
).
57.
S. R.
Bazaz
,
A.
Mashhadian
,
A.
Ehsani
,
S. C.
Saha
,
T.
Krüger
, and
M. E.
Warkiani
, “
Computational inertial microfluidics: A review
,”
Lab Chip
20
,
1023
(
2020
).
58.
X.
Chen
,
C.
Xue
,
L.
Zhang
,
G.
Hu
,
X.
Jiang
, and
J.
Sun
, “
Inertial migration of deformable droplets in a microchannel
,”
Phys. Fluids
26
,
112003
(
2014
).
You do not currently have access to this content.