Molecular dynamics (MD) and volume of fluid (VOF) are powerful methods for the simulation of dynamic wetting at the nanoscale and macroscale, respectively, but the massive computational cost of MD and the sensitivity and uncertainty of boundary conditions in VOF limit their applications to other scales. In this work, we propose a multiscale simulation strategy by enhancing VOF simulations using self-consistent boundary conditions derived from MD. Specifically, the boundary conditions include a particular slip model based on the molecular kinetic theory for the three-phase contact line to account for the interfacial molecular physics, the classical Navier slip model for the remaining part of the liquid–solid interface, and a new source term supplemented to the momentum equation in VOF to replace the convectional dynamic contact angle model. Each slip model has been calibrated by the MD simulations. The simulation results demonstrate that with these new boundary conditions, the enhanced VOF simulations can provide consistent predictions with full MD simulations for the dynamic wetting of nanodroplets on both smooth and pillared surfaces, and its performance is better than those with other VOF models, especially for the pinning–depinning phenomenon. This multiscale simulation strategy is also proved to be capable of simulating dynamic wetting above the nanoscale, where the pure MD simulations are inaccessible due to the computational cost.

1.
T.
Young
, “
An essay on the cohesion of fluids
,”
Phil. Trans. R. Soc.
95
,
65
(
1805
).
2.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
(
2013
).
3.
S.
Kumar
, “
Liquid transfer in printing processes: Liquid bridges with moving contact lines
,”
Annu. Rev. Fluid Mech.
47
,
67
(
2015
).
4.
B.
Andreotti
and
J. H.
Snoeijer
, “
Statics and dynamics of soft wetting
,”
Annu. Rev. Fluid Mech.
52
,
285
(
2020
).
5.
E.
Vandre
,
M. S.
Carvalho
, and
S.
Kumar
, “
On the mechanism of wetting failure during fluid displacement along a moving substrate
,”
Phys. Fluids
25
,
102103
(
2013
).
6.
V.
Bergeron
,
D.
Bonn
,
J. Y.
Martin
 et al, “
Controlling droplet deposition with polymer additives
,”
Nature
405
,
772
(
2000
).
7.
A. A.
Darhuber
and
S. M.
Troian
, “
Principles of microfluidic actuation by modulation of surface stresses
,”
Annu. Rev. Fluid Mech.
37
,
425
(
2005
).
8.
P.
Galliker
,
J.
Schneider
,
H.
Eghlidi
 et al, “
Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets
,”
Nat. Commun.
3
,
890
(
2012
).
9.
W.
Li
,
J.
Lu
,
G.
Tryggvason
 et al, “
Numerical study of droplet motion on discontinuous wetting gradient surface with rough strip
,”
Phys. Fluids
33
,
012111
(
2021
).
10.
V. K.
Dhir
, “
Boiling heat transfer
,”
Annu. Rev. Fluid Mech.
30
,
365
(
1998
).
11.
H.
Li
,
W.
Fang
,
Y.
Li
 et al, “
Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces
,”
Nat. Commun.
10
,
950
(
2019
).
12.
M.
Sussman
,
A. S.
Almgren
,
J. B.
Bell
 et al, “
An adaptive level set approach for incompressible two-phase flows
,”
J. Comput. Phys.
148
,
81
(
1999
).
13.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
14.
S.
Manservisi
and
R.
Scardovelli
, “
A variational approach to the contact angle dynamics of spreading droplets
,”
Comput. Fluids
38
,
406
(
2009
).
15.
M.
Renardy
,
Y.
Renardy
, and
J.
Li
, “
Numerical simulation of moving contact line problems using a volume-of-fluid method
,”
J. Comput. Phys.
171
,
243
(
2001
).
16.
X.
Li
,
L.
He
,
Y.
He
 et al, “
Numerical study of droplet formation in the ordinary and modified T-junctions
,”
Phys. Fluids
31
,
082101
(
2019
).
17.
F.
Chu
,
S.
Li
,
Z.
Ni
 et al, “
Departure velocity of rolling droplet jumping
,”
Langmuir
36
,
3713
(
2020
).
18.
Y.
Sui
,
H.
Ding
, and
P. D. M.
Spelt
, “
Numerical simulations of flows with moving contact lines
,”
Annu. Rev. Fluid Mech.
46
,
97
(
2014
).
19.
D.
Jacqmin
, “
Contact-line dynamics of a diffuse fluid interface
,”
J. Fluid Mech.
402
,
57
(
2000
).
20.
N.
Savva
and
S.
Kalliadasis
, “
Dynamics of moving contact lines: A comparison between slip and precursor film models
,”
Europhys. Lett.
94
,
64004
(
2011
).
21.
Y. D.
Shikhmurzaev
, “
Moving contact lines in liquid/liquid/solid systems
,”
J. Fluid Mech.
334
,
211
(
1997
).
22.
M. N.
Popescu
,
J.
Ralston
, and
R.
Sedev
, “
Capillary rise with velocity-dependent dynamic contact angle
,”
Langmuir
24
,
12710
(
2008
).
23.
S. F.
Kistler
, “
Hydrodynamics of wetting
,” in
Wettability
(
Marcel Dekker
,
New York
,
1993
).
24.
Y. D.
Shikhmurzaev
, “
The moving contact line on a smooth solid surface
,”
Int. J. Multiphase Flow
19
,
589
(
1993
).
25.
S.
Kalliadasis
and
H. C.
Chang
, “
Apparent dynamic contact angle of an advancing gas–liquid meniscus
,”
Phys. Fluids
6
,
12
(
1994
).
26.
T. D.
Blake
, “
The physics of moving wetting lines
,”
J. Colloid Interface Sci.
299
,
1
(
2006
).
27.
A.
Ashish Saha
and
S. K.
Mitra
, “
Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow
,”
J. Colloid Interface Sci.
339
,
461
(
2009
).
28.
J.
Zhang
,
M. K.
Borg
, and
J. M.
Reese
, “
Multiscale simulation of dynamic wetting
,”
Int. J. Heat Mass Transfer
115
,
886
(
2017
).
29.
Y.-F.
Wang
,
Y.-B.
Wang
,
F.-F.
Xie
 et al, “
Spreading and retraction kinetics for impact of nanodroplets on hydrophobic surfaces
,”
Phys. Fluids
32
,
092005
(
2020
).
30.
H.
Liu
,
F.
Chu
,
J.
Zhang
 et al, “
Nanodroplets impact on surfaces decorated with ridges
,”
Phys. Rev. Fluids
5
,
074201
(
2020
).
31.
M.
Foroutan
,
F.
Esmaeilian
, and
M. T.
Rad
, “
The change in the wetting regime of a nanodroplet on a substrate with varying wettability: A molecular dynamics investigation
,”
Phys. Fluids
33
,
032017
(
2021
).
32.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
New York
,
1995
).
33.
J.
Zhang
,
P. F.
Wang
,
M. K.
Borg
 et al, “
A critical assessment of the line tension determined by the modified Young's equation
,”
Phys. Fluids
30
,
082003
(
2018
).
34.
J.
Fan
,
J.
De Coninck
,
H.
Wu
 et al, “
Microscopic origin of capillary force balance at contact line
,”
Phys. Rev. Lett.
124
,
125502
(
2020
).
35.
J. C.
Fernández-Toledano
,
T. D.
Blake
,
J. De
Coninck
 et al, “
Hidden microscopic life of the moving contact line of a waterlike liquid
,”
Phys. Rev. Fluids
5
,
104004
(
2020
).
36.
T.
Qian
,
X. P.
Wang
, and
P.
Sheng
, “
Molecular scale contact line hydrodynamics of immiscible flows
,”
Phys. Rev. E
68
,
016306
(
2003
).
37.
W.
Ren
and
W.
E
, “
Boundary conditions for the moving contact line problem
,”
Phys. Fluids
19
,
022101
(
2007
).
38.
J. J.
Shu
,
J. B.
Teo
, and
W. K.
Chan
, “
A new model for fluid velocity slip on a solid surface
,”
Soft Matter
12
,
8388
(
2016
).
39.
A. V.
Lukyanov
and
T.
Pryer
, “
Hydrodynamics of moving contact lines: Macroscopic versus microscopic
,”
Langmuir
33
,
8582
(
2017
).
40.
Z.-X.
Tong
,
Y.-L.
He
, and
W.-Q.
Tao
, “
A review of current progress in multiscale simulations for fluid flow and heat transfer problems: The frameworks, coupling techniques and future perspectives
,”
Int. J. Heat Mass Transfer
137
,
1263
(
2019
).
41.
H. F.
Wu
,
K. A.
Fichthorn
, and
A.
Borhan
, “
An atomistic–continuum hybrid scheme for numerical simulation of droplet spreading on a solid surface
,”
Heat Mass Transfer
50
,
351
(
2013
).
42.
M. E.
Kavousanakis
,
C. E.
Colosqui
,
I. G.
Kevrekidis
 et al, “
Mechanisms of wetting transitions on patterned surfaces: Continuum and mesoscopic analysis
,”
Soft Matter
8
,
7928
(
2012
).
43.
M.
Shaat
, “
Hybrid continuum-molecular modeling of fluid slip flow
,”
Phys. Fluids
32
,
122009
(
2020
).
44.
A. M. P.
Boelens
and
J. J.
de Pablo
, “
Generalised Navier boundary condition for a volume of fluid approach using a finite-volume method
,”
Phys. Fluids
31
,
021203
(
2019
).
45.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
 et al, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
(
1998
).
46.
O.
Ubbink
, “
Numerical prediction of two fluid systems with sharp interfaces
,” Ph.D. thesis (
Imperial College
,
London
,
1997
).
47.
S. S.
Deshpande
,
L.
Anumolu
, and
M. F.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
,
014016
(
2012
).
48.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
49.
I.
Malgarinos
,
N.
Nikolopoulos
,
M.
Marengo
 et al, “
VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model
,”
Adv. Colloid Interface Sci.
212
,
1
(
2014
).
50.
K.
Mahady
,
S.
Afkhami
, and
L.
Kondic
, “
A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries
,”
J. Comput. Phys.
294
,
243
(
2015
).
51.
T.
Qian
,
X.-P.
Wang
, and
P.
Sheng
, “
Molecular hydrodynamics of the moving contact line in two-phase immiscible flows
,”
Commun. Comput. Phys.
1
,
1
(
2006
), available at https://global-sci.org/intro/article_detail/cicp/7949.html.
52.
B.
Qian
,
J.
Park
, and
K. S.
Breuer
, “
Large apparent slip at a moving contact line
,”
Phys. Fluids
27
,
091703
(
2015
).
53.
R. S.
Voronov
,
D. V.
Papavassiliou
, and
L. L.
Lee
, “
Boundary slip and wetting properties of interfaces: Correlation of the contact angle with the slip length
,”
J. Chem. Phys.
124
,
204701
(
2006
).
54.
S. B.
Ramisetti
,
M. K.
Borg
,
D. A.
Lockerby
 et al, “
Liquid slip over gas nanofilms
,”
Phys. Rev. Fluids
2
,
084003
(
2017
).
55.
M. J.
de Ruijter
,
T. D.
Blake
, and
J.
De Coninck
, “
Dynamic wetting studied by molecular modeling simulations of droplet spreading
,”
Langmuir
15
,
7836
(
1999
).
56.
T. D.
Blake
, “
Dynamic contact angles and wetting kinetics
,” in
Wettability
(
Marcel Dekker
,
New York
,
1993
).
57.
R. E.
Powell
,
W. E.
Roseveare
, and
H.
Eyring
, “
Diffusion, thermal conductivity, and viscous flow of liquids
,”
Ind. Eng. Chem.
33
,
430
(
1941
).
58.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
59.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
60.
L.
Martinez
,
R.
Andrade
,
E. G.
Birgin
 et al, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
(
2009
).
61.
J. L. F.
Abascala
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
62.
H. C.
Andersen
, “
Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
,
24
(
1983
).
63.
J. G.
Amar
, “
Effects of long-range interactions in metal epitaxial growth
,”
Phys. Rev. B
67
,
165425
(
2003
).
64.
J.
Zhang
,
M. K.
Borg
,
K.
Sefiane
 et al, “
Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation
,”
Phys. Rev. E
92
,
052403
(
2015
).
65.
E.
Bertrand
,
T. D.
Blake
, and
J. D.
Coninck
, “
Influence of solid-liquid interactions on dynamic wetting: A molecular dynamics study
,”
J. Phys.: Condens. Matter
21
,
464124
(
2009
).
66.
F.
Wang
and
H.
Wu
, “
Molecular origin of contact line stick-slip motion during droplet evaporation
,”
Sci. Rep.
5
,
17521
(
2015
).
67.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
 et al, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).

Supplementary Material

You do not currently have access to this content.