The famous White–Metzner (WM) constitutive equation expresses a relatively simple nonlinear viscoelastic fluid of polymer melts. However, such a differential stress model, substantial with strong hyperbolic and singular problems, has hitherto always obtained unsatisfactory simulations of corner vortex in a typical contraction flow, especially for high Weissenberg numbers. A modified WM model useful for viscoelastic fluid computations is, therefore, proposed herein. As a validation, this model primarily fits the first normal stress difference for characterizing a fluid's elasticity, as well as shear viscosity and extensional viscosity. It is significant to discuss the vortex formation and growth, with the predicted vortex sizes in good agreement with the experimental data.

1.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Fluid Mechanics
(
Wiley-Interscience
,
New York
,
1987
).
2.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Kinetic Theory
(
Wiley-Interscience
,
New York
,
1987
).
3.
Z.
Tadmor
and
C. G.
Gogos
,
Principles of Polymer Processing
(
John Wiley & Sons
,
New York
,
1979
).
4.
F. A.
Morrison
,
Understanding Rheology
(
Oxford University
,
2001
).
5.
N.
Phan-Thien
,
Understanding Viscoelasticity: An Introduction to Rheology
(
Springer-Verlag Berlin
,
2013
).
6.
R.
Zheng
,
R. I.
Tanner
, and
X.-J.
Fan
,
Injection Molding: Integration of Theory and Modeling Methods
(
Springer
,
Berlin
,
2011
).
7.
J. G.
Oldroyd
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. London, Ser. A
200
,
523
(
1950
).
8.
J. L.
White
and
A. B.
Metzner
, “
Development of constitutive equations for polymeric melts and solutions
,”
J. Appl. Polym. Sci.
7
,
1867
(
1963
).
9.
D. V.
Boger
,
M. J.
Crochet
, and
R. A.
Keiller
, “
On viscoelastic flows through abrupt contractions
,”
J. Non-Newtonian Fluid Mech.
44
,
267
(
1992
).
10.
N.
Phan-Thien
and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
(
1977
).
11.
R. I.
Tanner
, “
Revisitation of PTT model
,”
J. Cent. South Univ. Technol.
14
,
26
(
2007
).
12.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
(
1982
).
13.
T. C. B.
McLeish
and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The Pom-Pom polymer
,”
J. Rheol.
42
,
81
(
1998
).
14.
W. M. H.
Verbeeten
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Differential constitutive equations for polymer melts: The extended Pom–Pom model
,”
J. Rheol.
45
,
823
(
2001
).
15.
I.
Sirakov
,
A.
Ainser
,
M.
Haouche
, and
J.
Guillet
, “
Three-dimensional numerical simulation of viscoelastic contraction flows using the Pom-Pom differential constitutive model
,”
J. Non-Newtonian Fluid Mech.
126
,
163
(
2005
).
16.
C. M.
Oishi
,
F. P.
Martins
,
M. F.
Tomé
,
J. A.
Cuminato
, and
S.
McKee
, “
Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows
,”
J. Non-Newtonian Fluid Mech.
166
,
165
(
2011
).
17.
E.
Mitsoulis
, “
Numerical simulation of entry flow of the IUPAC-LDPE melt
,”
J. Non-Newtonian Fluid Mech.
97
,
13
(
2001
).
18.
E.
Mitsoulis
,
M.
Schwetz
, and
H.
Münstedt
, “
Entry flow of LDPE melts in a planar contraction
,”
J. Non-Newtonian Fluid Mech.
111
,
41
(
2003
).
19.
E.
Mitsoulis
,
I. B.
Kazatchkov
, and
S. G.
Hatzikiriakos
, “
The effect of slip in the flow of a branched PP melt: Experiments and simulations
,”
Rheol. Acta
44
,
418
(
2005
).
20.
R.-Y.
Chang
and
S.-Y.
Chiou
, “
A unified K-BKZ model for residual stress analysis of injection molded three-dimensional thin shapes
,”
Polym. Eng. Sci.
35
,
1733
(
1995
).
21.
R. B.
Bird
and
J. M.
Wiest
, “
Constitutive equations for polymeric liquids
,”
Annu. Rev. Fluid Mech.
27
,
169
(
1995
).
22.
T. F.
Ballenger
and
J. L.
White
, “
The development of the velocity field in polymer melts in a reservoir approaching a capillary die
,”
J. Appl. Polym. Sci.
15
,
1949
(
1971
).
23.
J. L.
White
and
A.
Kondo
, “
Flow patterns in polyethylene and polystyrene melts during extrusion through a die entry region: Measurement and interpretation
,”
J. Non-Newtonian Fluid Mech.
3
,
41
(
1977
).
24.
C.-Y.
Ma
,
J. L.
White
,
F. C.
Weissert
, and
K.
Min
, “
Flow patterns in carbon black filled polyethylene at the entrance to a die
,”
J. Non-Newtonian Fluid Mech.
17
,
275
(
1985
).
25.
B.
Debbaut
,
J. M.
Marchal
, and
M. J.
Crochet
, “
Numerical simulation of highly viscoelastic flows through an abrupt contraction
,”
J. Non-Newtonian Fluid Mech.
29
,
119
(
1988
).
26.
H.-C.
Tseng
, “
A revisitation of generalized Newtonian fluids
,”
J. Rheol.
64
,
493
(
2020
).
27.
H. R.
Tamaddon-Jahromi
,
I. E.
Garduño
,
J. E.
López-Aguilar
, and
M. F.
Webster
, “
Predicting large experimental excess pressure drops for Boger fluids in contraction-expansion flow
,”
J. Non-Newtonian Fluid Mech.
230
,
43
(
2016
).
28.
J. E.
López-Aguilar
,
M. F.
Webster
,
H. R.
Tamaddon-Jahromi
, and
O.
Manero
, “
High-Weissenberg predictions for micellar fluids in contraction-expansion flows
,”
J. Non-Newtonian Fluid Mech.
222
,
190
(
2015
).
29.
J. E.
López-Aguilar
,
H. R.
Tamaddon-Jahromi
,
M. F.
Webster
, and
K.
Walters
, “
Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction flow
,”
Phys. Fluids
28
,
103104
(
2016
).
30.
J. E.
López-Aguilar
,
M. F.
Webster
,
H. R.
Tamaddon-Jahromi
,
M.
Pérez-Camacho
, and
O.
Manero
, “
Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions-Boger fluids
,”
J. Non-Newtonian Fluid Mech.
237
,
39
(
2016
).
31.
J. E.
López-Aguilar
,
M. F.
Webster
,
H. R.
Tamaddon-Jahromi
,
O.
Manero
,
D. M.
Binding
, and
K.
Walters
, “
On the use of continuous spectrum and discrete-mode differential models to predict contraction-flow pressure drops for Boger fluids
,”
Phys. Fluids
29
,
121613
(
2017
).
32.
M. F.
Webster
,
H. R.
Tamaddon-Jahromi
,
J. E.
López-Aguilar
, and
D. M.
Binding
, “
Enhanced pressure drop, planar contraction flows and continuous spectrum models
,”
J. Non-Newtonian Fluid Mech.
237
,
104184
(
2019
).
33.
J. E.
López-Aguilar
and
H. R.
Tamaddon-Jahromi
, “
Computational predictions for Boger fluids and circular contraction flow under various aspect ratios
,”
Fluids
5
,
85
(
2020
).
34.
D. D.
Joseph
,
M.
Renardy
, and
J.-C.
Saut
, “
Hyperbolicity and change of type in the flow of viscoelastic fluids
,”
Arch. Ration. Mech. Anal.
87
,
213
(
1985
).
35.
J. Y.
Yoo
and
D. D.
Joseph
, “
Hyperbolicity and change of type in the flow of viscoelastic fluids through channels
,”
J. Non-Newtonian Fluid Mech.
19
,
15
(
1985
).
36.
M. A.
Hulsen
and
J.
van der Zanden
, “
Problems, analysis, and solutions of the equations for viscoelastic flow
,”
Res. Numer. Fluid Mech.
17
,
73
(
1987
).
37.
M.
Ahrens
,
Y. J.
Yoo
, and
D. D.
Joseph
, “
Hyperbolicity and change of type in the flow viscoelastic fluids through pipes
,”
J. Non-Newtonian Fluid Mech.
24
,
67
(
1987
).
38.
M. A.
Alves
,
P. J.
Oliveira
, and
F. T.
Pinho
, “
Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions
,”
J. Non-Newtonian Fluid Mech.
110
,
45
(
2003
).
39.
C. J. S.
Petrie
, “
Extensional viscosity: A critical discussion
,”
J. Non-Newtonian Fluid Mech.
137
,
15
(
2006
).
40.
D.
Sarkar
and
M.
Gupta
, “
Further investigation of the effect of elongational viscosity on entrance flow
,”
J. Reinf. Plast. Compos.
20
,
1473
(
2001
).
41.
J. M.
Park
, “
Comment on ‘A revisitation of generalized Newtonian fluids
,’ ”
J. Rheol.
64
,
493
(
2020
).
42.
C.
Saengow
,
A. J.
Giacomin
,
N.
Grizzuti
, and
R.
Pasquino
, “
Startup steady shear flow from the Oldroyd 8-constant framework
,”
Phys. Fluids
31
,
063101
(
2019
).
43.
A.
Souvaliotis
and
A. N.
Beris
, “
An extended White-Metzner viscoelastic fluid model based on an internal structural parameter
,”
J. Rheol.
36
,
241
(
1992
).
44.
R.
Pantani
, “
Validation of a model to predict birefringence in injection molding
,”
Eur. Polym. J.
41
,
1484
(
2005
).
45.
D.
Rajagopalan
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Finite element methods for calculation of steady, viscoelastic flow using constitutive equations with a Newtonian viscosity
,”
J. Non-Newtonian Fluid Mech.
36
,
159
(
1990
).
46.
R.
Guénette
and
M.
Fortin
, “
A new mixed finite element method for computing viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
60
,
27
(
1995
).
47.
A.
Fortin
,
R.
Guénette
, and
R.
Pierre
, “
On the discrete EVSS method
,”
Comput. Methods Appl. Mech. Eng.
189
,
121
(
2000
).
48.
K.
Wang
, “
A new discrete EVSS method for the viscoelastic flows
,”
Comput. Math. Appl.
65
,
609
(
2013
).
49.
T.
Schweizer
, “
Measurement of the first and second normal stress differences in a polystyrene melt with a cone and partitioned plate tool
,”
Rheol. Acta
41
,
337
(
2002
).
50.
H. M.
Laun
and
H.
Münstedt
, “
Elongational behaviour of a low density polyethylene melt
,”
Rheol. Acta
17
,
415
(
1978
).
51.
R.-Y.
Chang
and
W.-H.
Yang
, “
Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach
,”
Int. J. Numer. Methods Fluids
37
,
125
(
2001
).
52.
S.-C.
Xue
,
N.
Phan-Thien
, and
R. I.
Tanner
, “
Three dimensional numerical simulations of viscoelastic flows through planar contractions
,”
J. Non-Newtonian Fluid Mech.
74
,
195
(
1998
).
53.
M. A.
Hulsen
,
R.
Fattal
, and
R.
Kupferman
, “
Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms
,”
J. Non-Newtonian Fluid Mech.
127
,
27
(
2005
).
54.
S.
Varchanis
,
A.
Syrakos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
A new finite element formulation for viscoelastic flows: Circumventing simultaneously the LBB condition and the high-Weissenberg number problem
,”
J. Non-Newtonian Fluid Mech.
267
,
78
(
2019
).
55.
S.
Varchanis
,
A.
Syrakos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
PEGAFEM-V: A new Petrov-Galerkin finite element method for free surface viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
284
,
104365
(
2020
).
You do not currently have access to this content.