Simulating rotating geometries in fluid flows for industrial applications remains a challenging task for general fluid solvers and in particular for the lattice Boltzmann method (LBM) due to inherent stability and accuracy problems. This work proposes an original method based on the widely used overset grids (or Chimera grids) while being integrated with a recent and optimized LBM collision operator, the hybrid recursive regularized model (HRR). The overset grids are used to actualize the rotating geometries where both the rotating and fixed meshes exist simultaneously. In the rotating mesh, the fictitious forces generated from its non-inertial rotating reference frame are taken into account by using a second order discrete forcing term. The fixed and rotating grids communicate with each other through the interpolation of the macroscopic variables. Meanwhile, the HRR collision model is selected to enhance the stability and accuracy properties of the LBM simulations by filtering out redundant higher order non-equilibrium tensors. The robustness of the overset HRR algorithm is assessed on different configurations, undergoing mid-to-high Reynolds number flows, and the method successfully demonstrates its robustness while exhibiting the second order accuracy.

1.
J.
Latt
and
B.
Chopard
, “
Lattice Boltzmann method with regularized pre-collision distribution functions
,”
Math Comput. Simul.
72
,
165
168
(
2006
).
2.
O.
Malaspinas
, “
Increasing stability and accuracy of the Lattice Boltzmann scheme: Recursivity and regularization
,” arXiv:1505.06900 [physics.flu-dyn] (
2015
).
3.
C.
Coreixas
,
G.
Wissocq
,
G.
Puigt
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
Recursive regularization step for high-order lattice Boltzmann methods
,”
Phys. Rev. E
96
,
033306
(
2017
).
4.
J.
Jacob
,
O.
Malaspinas
, and
P.
Sagaut
, “
A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for Lattice Boltzmann method-based large eddy simulation
,”
J. Turbul.
19
,
1051
1076
(
2018
).
5.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows
,”
J. Comput. Phys.
394
,
82
99
(
2019
).
6.
G.
Farag
,
S.
Zhao
,
T.
Coratger
,
P.
Boivin
,
G.
Chiavassa
, and
P.
Sagaut
, “
A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
,”
Phys. Fluids
32
,
066106
(
2020
).
7.
T.
Astoul
,
G.
Wissocq
,
J.-F.
Boussuge
,
A.
Sengissen
, and
P.
Sagaut
, “
Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method
,”
J. Comput. Phys.
418
,
109645
(
2020
).
8.
F.
Renard
,
G.
Wissocq
,
J.
Boussuge
, and
P.
Sagaut
, “
A linear stability analysis of compressible hybrid lattice Boltzmann methods
,” arXiv:2006.08477 (
2020
).
9.
G.
Wissocq
,
C.
Coreixas
, and
J.-F.
Boussuge
, “
Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods
,”
Phys. Rev. E
102
,
053305
(
2020
).
10.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
,
602
628
(
2004
).
11.
L.
Zhu
,
G.
He
,
S.
Wang
,
L.
Miller
,
X.
Zhang
,
Q.
You
, and
S.
Fang
, “
An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application
,”
Comput. Math. Appl.
61
,
3506
3518
(
2011
).
12.
J.
Favier
,
A.
Revell
, and
A.
Pinelli
, “
A Lattice Boltzmann–Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects
,”
J. Comput. Phys.
261
,
145
161
(
2014
).
13.
L.
Xu
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers
,”
J. Comput. Phys.
375
,
22
56
(
2018
).
14.
M.
Specklin
,
P.
Dubois
,
A.
Albadawi
, and
Y.
Delauré
, “
A full immersed boundary solution coupled to a lattice–Boltzmann solver for multiple fluid–structure interactions in turbulent rotating flows
,”
J. Fluids Struct.
90
,
205
229
(
2019
).
15.
S.
Nishimura
,
K.
Hayashi
,
S.
Nakaye
,
M.
Yoshimoto
,
K.
Suga
, and
T.
Inamuro
, “
Implicit large-eddy simulation of rotating and non-rotating machinery with cumulant lattice Boltzmann method aiming for industrial applications
,” in
AIAA Aviation 2019 Forum
(
2019
).
16.
R.
Zhang
,
C.
Sun
,
Y.
Li
,
R.
Satti
,
R.
Shock
,
J.
Hoch
, and
H.
Chen
, “
Lattice Boltzmann approach for local reference frames
,”
Commun. Comput. Phys.
9
,
1193
1205
(
2011
).
17.
Y.
Li
, “
An improved volumetric LBM boundary approach and its extension for sliding mesh simulation
,” Ph.D. thesis (
Iowa State University
,
2011
).
18.
F.
Perot
,
M.-S.
Kim
, and
M.
Meskine
, “
NREL wind turbine aerodynamics validation and noise predictions using a lattice Boltzmann method
,”
18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
(
2012
).
19.
E. K.
Far
,
M.
Geier
, and
M.
Krafczyk
, “
Simulation of rotating objects in fluids with the cumulant lattice Boltzmann model on sliding meshes
,”
Comput. Math. Appl.
79
,
3
16
(
2020
).
20.
P.
Lallemand
and
L.-S.
Luo
, “
Lattice Boltzmann equation with Overset method for moving objects in two-dimensional flows
,”
J. Comput. Phys.
407
,
109223
(
2020
).
21.
P.
Bhatnagar
,
E.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
(
3
),
511
525
(
1954
).
22.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method—Principles and Practice
(
Springer International Publishing
,
2016
), pp.
251
282
.
23.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
(
Cambridge University Press
,
1953
).
24.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
25.
P. J.
Dellar
, “
An interpretation and derivation of the lattice Boltzmann method using Strang splitting
,”
Comput. Math. Appl.
65
,
129
141
(
2013
).
26.
R.
Salmon
, “
Lattice Boltzmann solutions of the three-dimensional planetary geostrophic equations
,”
J. Mar. Res.
57
,
847
884
(
1999
).
27.
G.
Silva
and
V.
Semiao
, “
First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form
,”
J. Fluid Mech.
698
,
282
303
(
2012
).
28.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
New York
,
1992
), pp.
123
128
.
29.
P. M.
Hummel
, “
The accuracy of linear interpolation
,”
Am. Math. Mon.
53
,
364
366
(
1946
).
30.
J.
Tölke
and
M.
Krafczyk
, “
Second order interpolation of the flow field in the lattice boltzmann method
,”
Comput. Math. Appl.
58
,
898
902
(
2009
).
31.
O.
Malaspinas
,
B.
Chopard
, and
J.
Latt
, “
General regularized boundary condition for multi-speed lattice Boltzmann models
,”
Comput. Fluids
49
,
29
35
(
2011
).
32.
Y.
Feng
,
S.
Guo
,
J.
Jacob
, and
P.
Sagaut
, “
Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows
,”
Phys. Fluids
31
,
126103
(
2019
).
33.
A. J. C.
Ladd
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation
,”
J. Fluid Mech.
271
,
285
309
(
1994
).
34.
I.
Ginzburg
and
D.
d'Humières
, “
Multireflection boundary conditions for lattice Boltzmann models
,”
Phys. Rev. E
68
,
066614
(
2003
).
35.
M.
Meldi
,
E.
Vergnault
, and
P.
Sagaut
, “
An arbitrary Lagrangian–Eulerian approach for the simulation of immersed moving solids with lattice Boltzmann method
,”
J. Comput. Phys.
235
,
182
198
(
2013
).
36.
G.
Silva
, “
Discrete effects on the forcing term for the lattice Boltzmann modeling of steady hydrodynamics
,”
Comput. Fluids
203
,
104537
(
2020
).
37.
D.
Lycett-Brown
and
K. H.
Luo
, “
Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios
,”
Phys. Rev. E
91
,
023305
(
2015
).
38.
M. B.
Reider
and
J. D.
Sterling
, “
Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations
,”
Comput. Fluids
24
,
459
467
(
1995
).
39.
P. A.
Skordos
, “
Initial and boundary conditions for the lattice Boltzmann method
,”
Phys. Rev E
48
,
4823
4842
(
1993
).
40.
X.
He
and
L.-S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier–Stokes equation
,”
J. Stat. Phys.
88
,
927
944
(
1997
).
41.
D. J.
Holdych
,
D. R.
Noble
,
J. G.
Georgiadis
, and
R. O.
Buckius
, “
Truncation error analysis of lattice Boltzmann methods
,”
J. Comput. Phys.
193
,
595
619
(
2004
).
42.
S.
Ubertini
,
P.
Asinari
, and
S.
Succi
, “
Three ways to lattice Boltzmann: A unified time-marching picture
,”
Phys. Rev. E
81
,
16311
(
2010
).
43.
J. M.
Buick
and
C. A.
Greated
, “
Gravity in a lattice Boltzmann model
,”
Phys. Rev. E
61
,
5307
5320
(
2000
).
44.
T.
Krüger
,
F.
Varnik
, and
D.
Raabe
, “
Shear stress in lattice Boltzmann simulations
,”
Phys. Rev. E
79
,
046704
(
2009
).
45.
S.
Hou
,
Q.
Zou
,
S.
Chen
,
G.
Doolen
, and
A. C.
Cogley
, “
Simulation of cavity flow by the lattice Boltzmann method
,”
J. Comput. Phys.
118
,
329
347
(
1995
).
46.
D.
Ricot
,
S.
Marié
,
P.
Sagaut
, and
C.
Bailly
, “
Lattice Boltzmann method with selective viscosity filter
,”
J. Comput. Phys.
228
,
4478
4490
(
2009
).
47.
P. J.
Dellar
, “
Bulk and shear viscosities in lattice Boltzmann equations
,”
Phys. Rev. E
64
,
031203
(
2001
).
48.
X.
He
, “
Error analysis for the interpolation-supplemented lattice-Boltzmann equation scheme
,”
Int. J. Mod. Phys. C
8
,
737
745
(
1997
).
49.
X.
He
,
X.
Shan
, and
G.
Doolen
, “
Discrete Boltzmann equation model for nonideal gases
,”
Phys. Rev. E
57
,
R13
(
1998
).
50.
G.
Wissocq
and
J.-F.
Boussuge
, “
Consistent vortex initialization for the athermal lattice Boltzmann method
,”
Phys. Rev. E
101
,
043306
(
2020
),
51.
G.
Wang
,
F.
Duchaine
,
D.
Papadogiannis
,
I.
Duran
,
S.
Moreau
, and
L. Y.
Gicquel
, “
An overset grid method for large eddy simulation of turbomachinery stages
,”
J. Comput. Phys.
274
,
333
355
(
2014
).
52.
V. B.
Ananthan
,
P.
Bernicke
, and
R. A. D.
Akkermans
, “
Aeroacoustic analysis of a circulation-controlled high-lift flap by zonal overset large-eddy simulation
,”
AIAA J.
58
,
5294
5305
(
2020
).
53.
A. H.
Dawi
and
R. A.
Akkermans
, “
Spurious noise in direct noise computation with a finite volume method for automotive applications
,”
Int. J. Heat Fluid Flow
72
,
243
256
(
2018
).
54.
S.
Mittal
and
B.
Kumar
, “
Flow past a rotating cylinder
,”
J. Fluid Mech.
476
,
303
334
(
2003
).
55.
H.
Toubin
and
D.
Bailly
, “
Development and application of a new unsteady far-field drag decomposition method
,”
AIAA J.
53
,
3414
3429
(
2015
).
56.
M.
Gariepy
,
J.-Y.
Trepanier
, and
B.
Malouin
, “
Generalization of the far-field drag decomposition method to unsteady flows
,”
AIAA J.
51
,
1309
1319
(
2013
).
57.
H.
Touil
,
D.
Ricot
, and
E.
Lévêque
, “
Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method
,”
J. Comput. Phys.
256
,
220
233
(
2014
).
58.
Y.
Feng
,
S.
Guo
,
J.
Jacob
, and
P.
Sagaut
, “
Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics
,”
Phys. Rev. E
101
,
063302
(
2020
).
59.
K.
Mobini
and
M.
Niazi
, “
Large eddy simulation of the flow across a rotating circular cylinder
,”
Int. J. Fluid Mech. Res.
41
,
1
15
(
2014
).
You do not currently have access to this content.