Swarms of drones is an emerging field of research and technology. Multicopter drones are noisy machines, and the noise effects would increase for a swarm. It is, therefore, essential to understand what flight formation conditions would reduce noise emissions. This study concerns the noise induced by drone swarms. We developed a high-resolution computational methodology for predicting aeroacoustic footprints emitted from a swarm of multi-copter drones. We show that a V-flight formation emits less sound pressure level noise than a U-shape (or rectangular) formation. We also demonstrate that the V-shape flight formation induces reduced drag, thus saving energy. This research's impact is broad, including defence and security, public health, transportation, and surveillance, among others.

1.
P. B.
Lissaman
and
C. A.
Schollenberger
, “
Formation flight of birds
,”
Science
168
,
1003
1005
(
1970
).
2.
R. G.
Bill
and
W. F.
Hernnkind
, “
Drag reduction by formation movement in spiny lobsters
,”
Science
193
,
1146
1148
(
1976
).
3.
R. M.
May
, “
Flight formations in geese and other birds
,”
Nature
282
,
778
780
(
1979
).
4.
I. D.
Couzin
,
J.
Krause
,
N. R.
Franks
, and
S. A.
Levin
, “
Effective leadership and decision-making in animal groups on the move
,”
Nature
433
,
513
516
(
2005
).
5.
M.
Nagy
,
Z.
Akos
,
D.
Biro
, and
T.
Vicsek
, “
Hierarchical group dynamics in pigeon flocks
,”
Nature
464
,
890
894
(
2010
).
6.
J. P.
Badgerow
and
F. R.
Hainsworth
, “
Energy savings through formation flight? A re-examination of the vee formation
,”
J. Theor. Biol.
93
,
41
52
(
1981
).
7.
C. J.
Cutts
and
J. R.
Speakman
, “
Energy savings in formation flight of pink-footed geese
,”
J. Exp. Biol.
189
,
251
261
(
1994
).
8.
H.
Weimerskirch
,
J.
Martin
,
Y.
Clerquin
,
P.
Alexandre
, and
S.
Jiraskova
, “
Energy saving in flight formation
,”
Nature
413
,
697
698
(
2001
).
9.
S.
Portugal
,
T.
Hubel
, and
J.
Fritz
, “
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight
,”
Nature
505
,
399
402
(
2014
).
10.
T. A.
Brungart
,
S. T.
Olson
,
B. L.
Kline
, and
Z. W.
Yoas
, “
Quadcopter propeller noise and its control
,”
J. Acoust. Soc. Am.
145
,
1794
1794
(
2019
).
11.
A. J.
Torija
,
P.
Chaitanya
, and
Z.
Li
, “
Psychoacoustic analysis of contra-rotating propeller noise for unmanned aerial vehicles
,”
J. Acoust. Soc. America
149
,
835
846
(
2021
).
12.
D.
Han
,
D.
Gwak
, and
S.
Lee
, “
Noise prediction of multi-rotor UAV by rpm fluctuation correction method
,”
J. Mech. Sci. Technol.
34
,
1429
1443
(
2020
).
13.
J.
Whelchel
,
W. N.
Alexander
, and, and
N.
Intaratep
, “
Propeller noise in confined anechoic and open environments
,” AIAA Paper No. 2020-1252,
2020
.
14.
H.
Lee
and
D.-J.
Lee
, “
Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle
,”
Phys. Fluids
32
,
047107
(
2020
).
15.
M.
Guzik
,
K.
Kowalczyk
,
S.
Woźniak
,
M.
Fraś
,
K.
Juros
,
D.
Kaczor
, and
P.
Walas
, “
Acoustic source localization using drone-embedded microphone array
,”
J. Acoust. Soc. Am.
146
,
3058
3059
(
2019
).
16.
Z.
Wang
,
Q.
Henricks
,
M.
Zhuang
,
A.
Pandey
,
M.
Sutkowy
,
B.
Harter
,
M.
McCrink
, and
J.
Gregory
, “
Impact of rotor–airframe orientation on the aerodynamic and aeroacoustic characteristics of small unmanned aerial systems
,”
Drones
3
,
56
(
2019
).
17.
N. S.
Zawodny
and
N. A.
Pettingil
, “
Acoustic wind tunnel measurements of a quadcopter inhover and forward flight conditions
,”
Technical Report No. NF1676L-29515
,
NASA
,
2018
.
18.
N.
Kloet
,
S.
Watkins
, and
R.
Clothier
, “
Acoustic signature measurement of small multi-rotor unmanned aircraft systems
,”
Int. J. Micro Air Vehicles
9
,
3
14
(
2017
).
19.
M.
Haege
and
M.
Oispuu
, “
Bearing of unmanned aerial vehicles by a volumetric microphone array
,”
J. Acoust. Soc. Am.
141
,
3915
3915
(
2017
).
20.
N. S.
Zawodny
,
D.
Boyd
, and
C. L.
Burley
, “
Acoustic characterization and prediction of representative, small-scale rotary-wing unmanned aircraft system components
,” in
American Helicopter Society (AHS) Annual Forum
(
2016
).
21.
N.
Intaratep
,
W. N.
Alexander
,
W. J.
Devenport
,
S. M.
Grace
, and, and
A.
Dropkin
, “
Experimental study of quadcopter acoustics and performance at static thrust conditions
,” AIAA Paper No. 2016-2873,
2016
.
22.
Z.
Ning
, “
Experimental investigations on the aerodynamic and aeroacoustic characteristics of small UAS propellers
,” Ph.D. dissertation (
Iowa State University
,
2018
).
23.
C.
Paz
,
E.
Suárez
,
C.
Gil
, and
C.
Baker
, “
CFD analysis of the aerodynamic effects on the stability of the flight of a quadcopter UAV in the proximity of walls and ground
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104378
(
2020
).
24.
H.
Kolamunna
,
J.
Li
,
T.
Dahanayaka
,
S.
Seneviratne
,
K.
Thilakaratne
,
A. Y.
Zomaya
, and
A.
Seneviratne
, “
Acousticprint: Acoustic signature based open set drone identification
,” in
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks
, WiSec '20 (
Association for Computing Machinery
,
2020
) pp.
349
350
.
25.
S. O.
Afari
, “
Prediction of noise associated with an isolated UAV propeller
,”
Technical Report Dissertations and Theses
(
Embry-Riddle Aeronautical University
,
2019
).
26.
A.
Christian
and
R.
Cabell
, “
Initial investigation into the psychoacoustic properties of small unmanned aerial system noise
,”
Technical Report No. NF1676L-25753
, NASA Technical Report,
2017
.
27.
M.
Goddard
,
Z.
Davies
, and
S
Guenat
, “
A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems
,”
Nat. Ecol. Evol.
5
,
219
230
(
2021
).
28.
S.
Mintchev
,
S.
de Rivaz
, and
D.
Floreano
, “
Insect-inspired mechanical resilience for multicopters
,”
IEEE Rob. Autom. Lett.
2
,
1248
1255
(
2017
).
29.
J. H.
Ferziger
and
M.
Peric
,
Computational Methods for Fluid Dynamics
(
Springer
,
1999
).
30.
F.
Moukalled
,
L.
Mangani
, and
M.
Darwish
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab
, 1st ed. (
Springer Publishing Company, Incorporated
,
2015
).
31.
F.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
32.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW Industries, Incorporated
,
2007
).
33.
H.
Jasak
, “
Openfoam: Open source CFD in research and industry
,”
Int. J. Naval Archit. Ocean Eng.
1
,
89
94
(
2009
).
34.
R. G.
Rajagopalan
and
S. R.
Mahur
, “
Three dimensional analysis of a rotor in forward flight
,”
J. Am. Helicopter Soc.
38
,
14
25
(
1993
).
35.
L. A. J.
Zori
and
R. G.
Rajagopalan
, “
Navier–Stokes calculation of rotor– airframe interaction in forward flight
,”
J. Am. Helicopter Soc.
40
,
57
(
1995
).
36.
D. R. Poling, H. Rosenstein, and R. G. Rajagopalan,
Use of a Navier
Stokes code in understanding tiltrotor flowfields in hover
,”
J. Am. Helicopter Soc.
43
,
103
109
(
1998
).
37.
K.
Brentner
and
F.
Farassat
, “
Helicopter noise prediction: The current status and future direction
,”
J. Sound Vib.
170
,
79
96
(
1994
).
38.
F.
Farassat
, “
Linear acoustic formulas for calculation of rotating blade noise
,”
AIAA J.
19
,
1122
1130
(
1981
).
39.
F.
Farassat
, “
Derivation of formulation 1 and 1A Farassat
,”
Technical Report No. 214853
,
NASA
,
2007
.
40.
J. E. Ffowcs
Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Math. Phys. Sci.
264
,
321
342
(
1969
).
41.
C. L.
Morfey
, “
Amplification of aerodynamic noise by convected flow inhomogeneities
,”
J. Sound Vib.
31
,
391
397
(
1973
).
42.
P. R.
Spalart
and
M. L.
Shur
, “
Variants of the Ffowcs Williams
Hawkings equation and their coupling with simulations of hot jets
,”
Int. J. Aeroacoust.
8
,
477
491
(
2009
).
43.
S.
Loiodice
,
D.
Drikakis
, and
A.
Kokkalis
, “
An efficient algorithm for the retarded time equation for noise from rotating sources
,”
J. Sound Vib.
412
,
336
348
(
2018
).
44.
S.
Loiodice
,
D.
Drikakis
, and
A.
Kokkalis
, “
Emission surfaces and noise prediction from rotating sources
,”
J. Sound Vib.
429
,
245
264
(
2018
).
45.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
, and
C. J.
Freitas
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.
130
,
078001
(
2008
).
You do not currently have access to this content.