First, a new reconstruction strategy is proposed to improve the accuracy of the fifth-order weighted essentially non-oscillatory (WENO) scheme. It has been noted that conventional WENO schemes still suffer from excessive numerical dissipation near-critical regions. One of the reasons is that they tend to under-use all adjacent smooth substencils thus fail to realize optimal interpolation. Hence in this work, a modified WENO (MWENO) strategy is designed to restore the highest possible order interpolation when three target substencils or two target adjacent substencils are smooth. Since the new detector is formulated under the original smoothness indicators, no obvious complexity and cost are added to the simulation. This idea has been successfully implemented into two classical fifth-order WENO schemes, which improve the accuracy near the critical region but without destroying essentially non-oscillatory properties. Second, the tangent of hyperbola for interface capturing (THINC) scheme is introduced as another reconstruction candidate to better represent the discontinuity. Finally, the MWENO and THINC schemes are implemented with the boundary variation diminishing algorithm to further minimize the numerical dissipation across discontinuities. Numerical verifications show that the proposed scheme accurately captures both smooth and discontinuous flow structures simultaneously with high-resolution quality. Meanwhile, the presented scheme effectively reduces numerical dissipation error and suppresses spurious numerical oscillation in the presence of strong shock or discontinuity for compressible flows and compressible two-phase flows.

1.
R.
Abgrall
and
S.
Karni
, “
Computations of compressible multifluids
,”
J. Comput. Phys.
169
(
2
),
594
623
(
2001
).
2.
B.
Ahmadi Befrui
,
A.
Gosman
,
R.
Issa
, and
A.
Watkins
, “
An implicit non-iterative solution procedure for the calculation of flows in reciprocating engine chambers
,”
Comput. Methods Appl. Mech. Eng.
79
(
3
),
249
279
(
1990
).
3.
G.
Allaire
,
S.
Clerc
, and
S.
Kokh
, “
A five-equation model for the simulation of interfaces between compressible fluids
,”
J. Comput. Phys.
181
(
2
),
577
616
(
2002
).
4.
T.
Arbogast
,
C. S.
Huang
, and
X.
Zhao
, “
Accuracy of weno and adaptive order weno reconstructions for solving conservation laws
,”
SIAM J. Numer. Anal.
56
(
3
),
1818
1847
(
2018
).
5.
D. S.
Balsara
,
S.
Garain
, and
C.-W.
Shu
, “
An efficient class of weno schemes with adaptive order
,”
J. Comput. Phys.
326
,
780
804
(
2016
).
6.
J. R.
Blake
and
D.
Gibson
, “
Cavitation bubbles near boundaries
,”
Annu. Rev. Fluid Mech.
19
(
1
),
99
123
(
1987
).
7.
D.
Bogdanoff
, “
Compressibility effects in turbulent shear layers
,”
AIAA J.
21
(
6
),
926
927
(
1983
).
8.
R.
Borges
,
M.
Carmona
,
B.
Costa
, and
W. S.
Don
, “
An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
,”
J. Comput. Phys.
227
(
6
),
3191
3211
(
2008
).
9.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2014
).
10.
S.
Chen
,
J.
Wang
,
H.
Li
,
M.
Wan
, and
C.
Shiyi
, “
Spectra and mach number scaling in compressible homogeneous shear turbulence
,”
Phys. Fluids
30
,
065109
(
2018
).
11.
L.
Cheng
,
X.
Deng
,
B.
Xie
,
Y.
Jiang
, and
F.
Xiao
, “
Low-dissipation bvd schemes for single and multi-phase compressible flows on unstructured grids
,”
J. Comput. Phys.
428
,
110088
(
2021
).
12.
Z.
Cheng
,
Y.
Liu
,
M.
Zhang
, and
J.
Wang
, “
IB-WENO method for incompressible flow with elastic boundaries
,”
J. Comput. Appl. Math.
362
,
498
(
2019
).
13.
B.
Costa
and
W. S.
Don
, “
High order hybrid central–WENO finite difference scheme for conservation laws
,”
J. Comput. Appl. Math.
204
(
2
),
209
218
(
2007
).
14.
R. N.
Dahms
and
J. C.
Oefelein
, “
On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures
,”
Phys. Fluids
25
,
092103
(
2013
).
15.
X.
Deng
,
S.
Inab
,
B.
Xie
,
K.-M.
Shyue
, and
F.
Xiao
, “
High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces
,”
J. Comput. Phys.
371
,
945
966
(
2018
).
16.
X.
Deng
,
Y.
Shimizu
, and
F.
Xiao
, “
A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm
,”
J. Comput. Phys.
386
,
323
349
(
2019
).
17.
X.
Deng
,
Y.
Shimizu
,
B.
Xie
, and
F.
Xiao
, “
Constructing higher order discontinuity-capturing schemes with upwind-biased interpolations and boundary variation diminishing algorithm
,”
Comput. Fluids
200
,
104433
(
2020
).
18.
X.
Deng
,
B.
Xie
,
R.
Loubè
,
Y.
Shimizu
, and
F.
Xiao
, “
Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts
,”
Comput. Fluids
171
,
1
14
(
2018
).
19.
X.
Deng
,
B.
Xie
,
F.
Xiao
, and
H.
Teng
, “
New accurate and efficient method for stiff detonation capturing
,”
AIAA J.
56
(
10
),
4024
4038
(
2018
).
20.
P. F.
Dunn
,
F. O.
Thomas
,
M. P.
Davis
, and
I. E.
Dorofeeva
, “
Experimental characterization of aviation-fuel cavitation
,”
Phys. Fluids
22
,
117102
(
2010
).
21.
L.
Fu
,
X. Y.
Hu
, and
N. A.
Adams
, “
A family of high-order targeted ENO schemes for compressible-fluid simulations
,”
J. Comput. Phys.
305
,
333
359
(
2016
).
22.
T. B.
Gatski
and
J. P.
Bonnet
,
Compressibility, Turbulence and High Speed Flow
(
Academic Press
,
2013
).
23.
L. Y.
Gicquel
,
G.
Staffelbach
, and
T.
Poinsot
, “
Large eddy simulations of gaseous flames in gas turbine combustion chambers
,”
Prog. Energy Combust. Sci.
38
(
6
),
782
817
(
2012
).
24.
S.
Gottlieb
,
C. W.
Shu
, and
E.
Tadmor
, “
Strong stability-preserving high-order time discretization methods
,”
SIAM Rev.
43
(
1
),
89
112
(
2001
).
25.
J.
Guo
and
J. H.
Jung
, “
A numerical study of the local monotone polynomial edge detection for the hybrid WENO method
,”
J. Comput. Appl. Math.
321
,
232
245
(
2017
).
26.
J. F.
Haas
and
B.
Sturtevant
, “
Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
,”
J. Fluid Mech.
181
,
41
76
(
1987
).
27.
A.
Harten
,
B.
Engquist
,
S.
Osher
, and
S. R.
Chakravarthy
, “
Uniformly high order accurate essentially non-oscillatory schemes, III
,”
J. Comput. Phys.
131
(
1
),
3
47
(
1997
).
28.
D. C.
Haworth
and
S. H.
El Tahry
, “
Probability density function approach for multidimensional turbulentflow calculations with application to in-cylinder flows in reciprocating engines
,”
AIAA J.
29
(
2
),
208
218
(
1991
).
29.
A. K.
Henrick
,
T. D.
Aslam
, and
J. M.
Powers
, “
Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points
,”
J. Comput. Phys.
207
(
2
),
542
567
(
2005
).
30.
F.
Hu
,
R.
Wang
, and
X.
Chen
, “
A modified fifth-order WENOZ method for hyperbolic conservation laws
,”
J. Comput. Appl. Math.
303
,
56
68
(
2016
).
31.
X.
Hu
,
Q.
Wang
, and
N. A.
Adams
, “
An adaptive central-upwind weighted essentially non-oscillatory scheme
,”
J. Comput. Phys.
229
(
23
),
8952
8965
(
2010
).
32.
C.
Huang
and
R.
Wang
, “
Mapped cweno scheme for hyperbolic conservation laws
,”
J. Comput. Appl. Math.
344
,
229
244
(
2018
).
33.
M.
Ida
, “
Multibubble cavitation inception
,”
Phys. Fluids
21
,
113302
(
2009
).
34.
G. S.
Jiang
and
C. W.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
(
1
),
202
228
(
1996
).
35.
Z. H.
Jiang
,
X.
Deng
,
F.
Xiao
,
C.
Yan
, and
J.
Yu
, “
A higher order interpolation scheme of finite volume method for compressible flow on curvilinear grids
,”
Commun. Comput. Phys.
28
(
4
),
1609
1638
(
2020
).
36.
H.
Jin
,
X. F.
Liu
,
T.
Lu
,
B.
Cheng
,
J.
Glimm
, and
D. H.
Sharp
, “
Rayleigh–Taylor mixing rates for compressible flow
,”
Phys. Fluids
17
,
024104
(
2005
).
37.
C. Y.
Jung
and
T. B.
Nguyen
, “
A new adaptive weighted essentially non-oscillatory WENO-θ scheme for hyperbolic conservation laws
,”
J. Comput. Appl. Math.
328
,
314
339
(
2018
).
38.
F.
Kemm
, “
On the proper setup of the double mach reflection as a test case for the resolution of gas dynamics codes
,”
Comput. Fluids
132
,
72
75
(
2016
).
39.
D. I.
Ketcheson
,
M.
Parsani
, and
R. J.
LeVeque
, “
High-order wave propagation algorithms for hyperbolic systems
,”
SIAM J. Sci. Comput.
35
(
1
),
A351
A377
(
2013
).
40.
W.
Kim
,
S.
Menon
, and
H. C.
Mongia
, “
Large-eddy simulation of a gas turbine combustor flow
,”
Combust. Sci. Technol.
143
(
1-6
),
25
62
(
1999
).
41.
D.
Levy
,
G.
Puppo
, and, and
G.
Russo
, “
Compact central WENO schemes for multidimensional conservation laws
,”
SIAM J. Sci. Comput.
22
(
2
),
656
672
(
2000
).
42.
X. D.
Liu
,
S.
Osher
, and
T.
Chan
, “
Weighted essentially non-oscillatory schemes
,”
J. Comput. Phys.
115
(
1
),
200
212
(
1994
).
43.
Y.
Lu
,
J.
Katz
, and
A.
Prosperetti
, “
Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam
,”
Phys. Fluids
25
,
073301
(
2013
).
44.
J.
Luo
,
X.
Hu
, and
N. A.
Adams
, “
Efficient formulation of scale separation for multi-scale modeling of interfacial flows
,”
J. Comput. Phys.
308
,
411
420
(
2016
).
45.
P.
Moin
and
S. V.
Apte
, “
Large-eddy simulation of realistic gas turbine combustors
,”
AIAA J.
44
(
4
),
698
708
(
2006
).
46.
C. D.
Ohl
, “
Cavitation inception following shock wave passage
,”
Phys. Fluids
14
,
3512
(
2002
).
47.
S.
Pirozzoli
, “
On the spectral properties of shock-capturing schemes
,”
J. Comput. Phys.
219
,
489
497
(
2006
).
48.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
(
1
),
145
185
(
1977
).
49.
D. H.
Porter
and
P. R.
Woodward
, “
Inertial range structures in decaying compressible turbulent flows
,”
Phys. Fluids
10
,
237
(
1998
).
50.
J.
Qiu
, “
Weno schemes with lax–wendroff type time discretizations for Hamilton–Jacobi equations
,”
J. Comput. Appl. Math.
200
(
2
),
591
605
(
2007
).
51.
J. J.
Quirk
and
S.
Karni
, “
On the dynamics of a shock–bubble interaction
,”
J. Fluid Mech.
318
,
129
163
(
1996
).
52.
N. O. P.
Raj
and
K.
Venkatasubbaiah
, “
A new approach for the design of hypersonic scramjet inlets
,”
Phys. Fluids
24
,
086103
(
2012
).
53.
A. M.
Rogerson
and
E.
Meiburg
, “
A numerical study of the convergence properties of ENO schemes
,”
J. Sci. Comput.
5
,
151
167
(
1990
).
54.
H. I.
Saravanamuttoo
,
G. F. C.
Rogers
, and
H.
Cohen
,
Gas Turbine Theory
(
Pearson Education
,
2001
).
55.
L.
Selle
,
G.
Lartigue
,
T.
Poinsot
,
R.
Koch
,
K. U.
Schildmacher
,
W.
Krebs
,
B.
Prade
,
P.
Kaufmann
, and
D.
Veynante
, “
Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes
,”
Combust. Flame
137
(
4
),
489
505
(
2004
).
56.
Y.
Shen
and
G.
Zha
, “
Improvement of weighted essentially non-oscillatory schemes near discontinuities
,”
Comput. Fluids
96
,
1
9
(
2014
).
57.
C. W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
(
2
),
439
471
(
1988
).
58.
K. M.
Shyue
, “
A fluid-mixture type algorithm for compressible multicomponent flow with Mie–Grüneisen equation of state
,”
J. Comput. Phys.
171
(
2
),
678
707
(
2001
).
59.
K. M.
Shyue
and
F.
Xiao
, “
An eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach
,”
J. Comput. Phys.
268
,
326
354
(
2014
).
60.
K.
So
,
X.
Hu
, and
N. A.
Adams
, “
Anti-diffusion interface sharpening technique for two-phase compressible flow simulations
,”
J. Comput. Phys.
231
(
11
),
4304
4323
(
2012
).
61.
G. A.
Sod
, “
A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
,”
J. Comput. Phys.
27
(
1
),
1
31
(
1978
).
62.
Z.
Sun
,
S.
Inaba
, and
F.
Xiao
, “
Boundary variation diminishing (BVD) reconstruction: A new approach to improve godunov schemes
,”
J. Comput. Phys.
322
,
309
325
(
2016
).
63.
L. L.
Takacs
, “
A two-step scheme for the advection equation with minimized dissipation and dispersion errors
,”
Mon. Weather Rev.
113
(
6
),
1050
1065
(
1985
).
64.
Y.
Tian
,
W.
Shi
,
F.
Zhong
, and
J.
Le
, “
Pilot hydrogen enhanced combustion in an ethylene-fueled scramjet combustor at Mach 4
,”
Phys. Fluids
33
,
015105
(
2021
).
65.
Y.
Tomita
, “
Jet atomization and cavitation induced by interactions between focused ultrasound and a water surface
,”
Phys. Fluids
26
,
097105
(
2014
).
66.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science & Business Media
,
2013
).
67.
M. D.
Turrell
,
P. J.
Stopford
,
K. J.
Syed
, and
E.
Buchanan
, “
Cfd simulation of the flow within and downstream of a high-swirl lean premixed gas turbine combustor
,” in
Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2004
), pp.
31
38
.
68.
D. C.
Venerus
and
D. J.
Bugajsky
, “
Compressible laminar flow in a channel
,”
Phys. Fluids
22
,
046101
(
2010
).
69.
P.
Woodward
and
P.
Colella
, “
The numerical simulation of two-dimensional fluid flow with strong shocks
,”
J. Comput. Phys.
54
(
1
),
115
173
(
1984
).
70.
F.
Xiao
,
Y.
Honma
, and
T.
Kono
, “
A simple algebraic interface capturing scheme using hyperbolic tangent function
,”
Int. J. Numer. Methods Fluids
48
(
9
),
1023
1040
(
2005
).
71.
F.
Xiao
,
S.
Ii
, and
C.
Chen
, “
Revisit to the THINC scheme: A simple algebraic VOF algorithm
,”
J. Comput. Phys.
230
(
19
),
7086
7092
(
2011
).
72.
B.
Xie
,
X.
Deng
,
Z.
Sun
, and
F.
Xiao
, “
A hybrid pressure–density-based mach uniform algorithm for 2D Euler equations on unstructured grids by using multi-moment finite volume method
,”
J. Comput. Phys.
335
,
637
663
(
2017
).
73.
B.
Xie
and
X.
Feng
, “
Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature
,”
J. Comput. Phys.
349
,
415
440
(
2017
).
74.
B.
Xie
,
P.
Jin
, and
X.
Feng
, “
An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method
,”
Int. J. Multiphase Flow
89
,
375
398
(
2017
).
75.
Y.
Xing
, “
High order finite volume weno schemes for the shallow water flows through channels with irregular geometry
,”
J. Comput. Appl. Math.
299
,
229
244
(
2016
).
76.
R.
Zhang
,
M.
Zhang
, and
C.
Shu
, “
High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model
,”
J. Comput. Appl. Math.
236
(
5
),
937
949
(
2011
).
You do not currently have access to this content.