Reynolds-averaged Navier–Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for more accurate turbulence models. Recently, emerging machine learning techniques have had a promising impact on turbulence modeling, but are still in their infancy regarding widespread industrial adoption. Toward their extensive uptake, this paper presents a universally interpretable machine learning (UIML) framework for turbulence modeling, which consists of two parallel machine learning-based modules to directly infer the structural and parametric representations of turbulence physics, respectively. At each phase of model development, data reflecting the evolution dynamics of turbulence and domain knowledge representing prior physical considerations are converted into modeling knowledge. The data- and knowledge-driven UIML is investigated with a deep residual network. The following three aspects are demonstrated in detail: (i) a compact input feature parameterizing a new turbulent timescale is introduced to prevent nonunique mappings between conventional input arguments and output Reynolds stress; (ii) a realizability limiter is developed to overcome the under-constrained state of modeled stress; and (iii) fairness and noise-insensitivity constraints are included in the training procedure. Consequently, an invariant, realizable, unbiased, and robust data-driven turbulence model is achieved. The influences of the training dataset size, activation function, and network hyperparameter on the performance are also investigated. The resulting model exhibits good generalization across two- and three-dimensional flows, and captures the effects of the Reynolds number and aspect ratio. Finally, the underlying rationale behind prediction is explored.

1.
H.
Choi
and
P.
Moin
, “
Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,”
Phys. Fluids
24
,
011702
(
2012
).
2.
X. I. A.
Yang
and
K. P.
Griffin
, “
Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation
,”
Phys. Fluids
33
,
015108
(
2021
).
3.
J.
Jiménez
, “
Computing high-Reynolds-number turbulence: Will simulations ever replace experiments?
,”
J. Turbul.
4
,
N22
(
2003
).
4.
J.
Slotnick
,
A.
Khodadoust
,
J.
Alonso
,
D.
Darmofal
,
W.
Gropp
,
E.
Lurie
, and
D.
Mavriplis
, “
CFD vision 2030 study: A path to revolutionary computational aerosciences
,”
Report No. NASA/CR-2014-218178
,
2014
.
5.
K.
Duraisamy
,
P. R.
Spalart
, and
C. L.
Rumsey
, “
Status, emerging ideas and future directions of turbulence modeling research in aeronautics
,”
Report No. NASA/TM-2017-219682
,
2017
.
6.
P. A.
Durbin
, “
Some recent developments in turbulence closure modeling
,”
Annu. Rev. Fluid Mech.
50
,
77
103
(
2018
).
7.
P. R.
Spalart
, “
Philosophies and fallacies in turbulence modeling
,”
Prog. Aerosp. Sci.
74
,
1
15
(
2015
).
8.
H.
Xiao
and
P.
Cinnella
, “
Quantification of model uncertainty in RANS simulations: A review
,”
Prog. Aerosp. Sci.
108
,
1
31
(
2019
).
9.
C.
Jiang
,
J.
Mi
,
S.
Laima
, and
H.
Li
, “
A novel algebraic stress model with machine-learning-assisted parameterization
,”
Energies
13
,
258
(
2020
).
10.
M. P.
Brenner
,
J. D.
Eldredge
, and
J. B.
Freund
, “
Perspective on machine learning for advancing fluid mechanics
,”
Phys. Rev. Fluids
4
,
100501
(
2019
).
11.
C.-W.
Chang
and
N. T.
Dinh
, “
Classification of machine learning frameworks for data-driven thermal fluid models
,”
Int. J. Therm. Sci.
135
,
559
579
(
2019
).
12.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,”
Annu. Rev. Fluid Mech.
51
,
357
377
(
2019
).
13.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
14.
S.
Pandey
,
J.
Schumacher
, and
K. R.
Sreenivasan
, “
A perspective on machine learning in turbulent flows
,”
J. Turbul.
21
,
567
584
(
2020
).
15.
B.
Wang
and
J.
Wang
, “
Application of artificial intelligence in computational fluid dynamics
,”
Ind. Eng. Chem. Res.
60
,
2772
2790
(
2021
).
16.
S. H.
Cheung
,
T. A.
Oliver
,
E. E.
Prudencio
,
S.
Prudhomme
, and
R. D.
Moser
, “
Bayesian uncertainty analysis with applications to turbulence modeling
,”
Reliab. Eng. Syst. Safe
96
,
1137
1149
(
2011
).
17.
W. N.
Edeling
,
P.
Cinnella
, and
R. P.
Dwight
, “
Predictive RANS simulations via Bayesian model-scenario averaging
,”
J. Comput. Phys.
275
,
65
91
(
2014
).
18.
W. N.
Edeling
,
P.
Cinnella
,
R. P.
Dwight
, and
H.
Bijl
, “
Bayesian estimates of parameter variability in the k-ε turbulence model
,”
J. Comput. Phys.
258
,
73
94
(
2014
).
19.
J.
Zhang
and
S.
Fu
, “
An efficient Bayesian uncertainty quantification approach with application to k-ω-γ transition modeling
,”
Comput. Fluids
161
,
211
224
(
2018
).
20.
J.
Weatheritt
and
R.
Sandberg
, “
A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
,”
J. Comput. Phys.
325
,
22
37
(
2016
).
21.
J.
Weatheritt
and
R. D.
Sandberg
, “
The development of algebraic stress models using a novel evolutionary algorithm
,”
Int. J. Heat Fluid Flow
68
,
298
318
(
2017
).
22.
Y.
Zhao
,
H. D.
Akolekar
,
J.
Weatheritt
,
V.
Michelassi
, and
R. D.
Sandberg
, “
RANS turbulence model development using CFD-driven machine learning
,”
J. Comput. Phys.
411
,
109413
(
2020
).
23.
L. Y.
Zhu
,
W. W.
Zhang
,
J. Q.
Kou
, and
Y. L.
Liu
, “
Machine learning methods for turbulence modeling in subsonic flows around airfoils
,”
Phys. Fluids
31
,
015105
(
2019
).
24.
J.
Ling
,
A.
Kurzawski
, and
J.
Templeton
, “
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
,”
J. Fluid Mech.
807
,
155
166
(
2016
).
25.
F. X.
Trias
,
A.
Gorobets
,
M. H.
Silvis
,
R. W. C. P.
Verstappen
, and
A.
Oliva
, “
A new subgrid characteristic length for turbulence simulations on anisotropic grids
,”
Phys. Fluids
29
,
115109
(
2017
).
26.
C.
Xie
,
J.
Wang
,
H.
Li
,
M.
Wan
, and
S.
Chen
, “
Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence
,”
Phys. Fluids
31
,
085112
(
2019
).
27.
S.
Beetham
and
J.
Capecelatro
, “
Formulating turbulence closures using sparse regression with embedded form invariance
,”
Phys. Rev. Fluids
5
,
084611
(
2020
).
28.
A.
Pal
, “
Deep learning emulation of subgrid-scale processes in turbulent shear flows
,”
Geophys. Res. Lett.
47
,
e2020
GL
087005
, (
2020
).
29.
S. G.
Rosofsky
and
E.
Huerta
, “
Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence
,”
Phys. Rev. D
101
,
084024
(
2020
).
30.
C.
Xie
,
Z.
Yuan
, and
J.
Wang
, “
Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence
,”
Phys. Fluids
32
,
115101
(
2020
).
31.
E.
Dow
and
Q.
Wang
, “
Quantification of structural uncertainties in the k–ω turbulence model
,” AIAA Paper No. 2011-1762,
2011
.
32.
E. J.
Parish
and
K.
Duraisamy
, “
A paradigm for data-driven predictive modeling using field inversion and machine learning
,”
J. Comput. Phys.
305
,
758
774
(
2016
).
33.
A. P.
Singh
and
K.
Duraisamy
, “
Using field inversion to quantify functional errors in turbulence closures
,”
Phys. Fluids
28
,
045110
(
2016
).
34.
A. P.
Singh
,
S.
Medida
, and
K.
Duraisamy
, “
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
,”
AIAA J.
55
,
2215
2227
(
2017
).
35.
C. X.
He
,
Y. Z.
Liu
, and
L.
Gan
, “
A data assimilation model for turbulent flows using continuous adjoint formulation
,”
Phys. Fluids
30
,
105108
(
2018
).
36.
M.
Yang
and
Z.
Xiao
, “
Improving the k–ω–γ–Ar transition model by the field inversion and machine learning framework
,”
Phys. Fluids
32
,
064101
(
2020
).
37.
M.
Emory
,
J.
Larsson
, and
G.
Iaccarino
, “
Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
,”
Phys. Fluids
25
,
110822
(
2013
).
38.
C.
Gorlé
and
G.
Iaccarino
, “
A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations
,”
Phys. Fluids
25
,
055105
(
2013
).
39.
G.
Iaccarino
,
A. A.
Mishra
, and
S.
Ghili
, “
Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
,”
Phys. Rev. Fluids
2
,
024605
(
2017
).
40.
R. L.
Thompson
,
A. A.
Mishra
,
G.
Iaccarino
,
W. N.
Edeling
, and
L.
Sampaio
, “
Eigenvector perturbation methodology for uncertainty quantification of turbulence models
,”
Phys. Rev. Fluids
4
,
044603
(
2019
).
41.
C.
Gorlé
,
C.
Garcia-Sanchez
, and
G.
Iaccarino
, “
Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows
,”
J. Wind Eng. Ind. Aerodyn.
144
,
202
212
(
2015
).
42.
C.
Gorlé
,
S.
Zeoli
,
M.
Emory
,
J.
Larsson
, and
G.
Iaccarino
, “
Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces
,”
Phys. Fluids
31
,
035101
(
2019
).
43.
A. A.
Mishra
,
J.
Mukhopadhaya
,
J.
Alonso
, and
G.
Iaccarino
, “
Design exploration and optimization under uncertainty
,”
Phys. Fluids
32
,
085106
(
2020
).
44.
A. A.
Mishra
and
G.
Iaccarino
, “
Theoretical analysis of tensor perturbations for uncertainty quantification of Reynolds averaged and subgrid scale closures
,”
Phys. Fluids
31
,
075101
(
2019
).
45.
H.
Xiao
,
J.-L.
Wu
,
J.-X.
Wang
,
R.
Sun
, and
C. J.
Roy
, “
Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach
,”
J. Comput. Phys.
324
,
115
136
(
2016
).
46.
J. X.
Wang
,
J. L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
,
034603
(
2017
).
47.
J. L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
,
074602
(
2018
).
48.
J. L.
Wu
,
R.
Sun
,
S.
Laizet
, and
H.
Xiao
, “
Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling
,”
Comput. Method Appl. Mech. Eng.
346
,
707
726
(
2019
).
49.
Y.
Yin
,
P.
Yang
,
Y.
Zhang
,
H.
Chen
, and
S.
Fu
, “
Feature selection and processing of turbulence modeling based on an artificial neural network
,”
Phys. Fluids
32
,
105117
(
2020
).
50.
R.
Maulik
,
O.
San
,
A.
Rasheed
, and
P.
Vedula
, “
Data-driven deconvolution for large eddy simulations of Kraichnan turbulence
,”
Phys. Fluids
30
,
125109
(
2018
).
51.
Z.
Wang
,
K.
Luo
,
D.
Li
,
J.
Tan
, and
J.
Fan
, “
Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation
,”
Phys. Fluids
30
,
125101
(
2018
).
52.
R.
Maulik
,
O.
San
,
J. D.
Jacob
, and
C.
Crick
, “
Sub-grid scale model classification and blending through deep learning
,”
J. Fluid Mech.
870
,
784
812
(
2019
).
53.
C.
Xie
,
K.
Li
,
C.
Ma
, and
J.
Wang
, “
Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network
,”
Phys. Rev. Fluids
4
,
104605
(
2019
).
54.
C.
Xie
,
J.
Wang
, and
E.
Weinan
, “
Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence
,”
Phys. Rev. Fluids
5
,
054606
(
2020
).
55.
Z.
Yuan
,
C.
Xie
, and
J.
Wang
, “
Deconvolutional artificial neural network models for large eddy simulation of turbulence
,”
Phys. Fluids
32
,
115106
(
2020
).
56.
S.
Yao
,
B.
Wang
,
A.
Kronenburg
, and
O. T.
Stein
, “
Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods
,”
Phys. Fluids
32
,
115124
(
2020
).
57.
T.
Readshaw
,
T.
Ding
,
S.
Rigopoulos
, and
W. P.
Jones
, “
Modeling of turbulent flames with the large eddy simulation–probability density function (LES–PDF) approach, stochastic fields, and artificial neural networks
,”
Phys. Fluids
33
,
035154
(
2021
).
58.
W. N.
Edeling
,
G.
Iaccarino
, and
P.
Cinnella
, “
A return to eddy viscosity model for epistemic UQ in RANS closures
,” in
Annual Research Briefs
(
Center for Turbulence Research, Stanford University
,
2016
), pp.
273
287
.
59.
K.
Champion
,
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven discovery of coordinates and governing equations
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
22445
22451
(
2019
).
60.
S. H.
Rudy
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Data-driven discovery of partial differential equations
,”
Sci. Adv.
3
,
e1602614
(
2017
).
61.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
3932
3937
(
2016
).
62.
M.
Ma
,
J.
Lu
, and
G.
Tryggvason
, “
Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system
,”
Phys. Fluids
27
,
092101
(
2015
).
63.
H.
Vaddireddy
,
A.
Rasheed
,
A. E.
Staples
, and
O.
San
, “
Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data
,”
Phys. Fluids
32
,
015113
(
2020
).
64.
L.
Zanna
and
T.
Bolton
, “
Data-driven equation discovery of ocean mesoscale closures
,”
Geophys. Res. Lett.
47
,
e2020
GL
088376
, (
2020
).
65.
J.
Zhang
and
W.
Ma
, “
Data-driven discovery of governing equations for fluid dynamics based on molecular simulation
,”
J. Fluid Mech.
892
,
A5
(
2020
).
66.
J. N.
Kutz
, “
Deep learning in fluid dynamics
,”
J. Fluid Mech.
814
,
1
4
(
2017
).
67.
J.
Ling
,
R.
Jones
, and
J.
Templeton
, “
Machine learning strategies for systems with invariance properties
,”
J. Comput. Phys.
318
,
22
35
(
2016
).
68.
S. B.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
340
(
1975
).
69.
J. L.
Lumley
, “
Toward a turbulent constitutive relation
,”
J. Fluid Mech.
41
,
413
434
(
1970
).
70.
J. A.
Anderson
,
An Introduction to Neural Networks
(
MIT Press
,
Massachusetts
,
1995
).
71.
K. M.
He
,
X. Y.
Zhang
,
S. Q.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
, Las Vegas, USA,
2016
), pp.
770
778
.
72.
Q.
Liu
and
D.
Wang
, “
Stein variational gradient descent: A general purpose Bayesian inference algorithm
,” in
Advances in Neural Information Processing Systems
(
MIT Press
,
Cambridge, USA
,
2016
), pp.
2378
2386
.
73.
C.
Rudin
, “
Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
,”
Nat. Mach. Intell.
1
,
206
215
(
2019
).
74.
A.
Spencer
and
R.
Rivlin
, “
Isotropic integrity bases for vectors and second-order tensors
,”
Arch. Ration. Mech. Anal.
9
,
45
63
(
1962
).
75.
R. W.
Johnson
,
Handbook of Fluid Dynamics
(
CRC Press
,
Florida
,
2016
).
76.
M.
Alber
,
A.
Buganza Tepole
,
W. R.
Cannon
,
S.
De
,
S.
Dura-Bernal
,
K.
Garikipati
,
G.
Karniadakis
,
W. W.
Lytton
,
P.
Perdikaris
,
L.
Petzold
, and
E.
Kuhl
, “
Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
,”
npj Digital Med.
2
,
115
(
2019
).
77.
S.
Pawar
,
O.
San
,
B.
Aksoylu
,
A.
Rasheed
, and
T.
Kvamsdal
, “
Physics guided machine learning using simplified theories
,”
Phys. Fluids
33
,
011701
(
2021
).
78.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
New York
,
2000
).
79.
C. G.
Speziale
,
S.
Sarkar
, and
T. B.
Gatski
, “
Modelling the pressure–strain correlation of turbulence: An invariant dynamical systems approach
,”
J. Fluid Mech.
227
,
245
272
(
1991
).
80.
Y. N.
Huang
and
F.
Durst
, “
Reynolds stress under a change of frame of reference
,”
Phys. Rev. E
63
,
056305
(
2001
).
81.
J. L.
Lumley
, “
Computational modeling of turbulent flows
,”
Adv. Appl. Mech.
18
,
123
176
(
1979
).
82.
S.
Banerjee
,
R.
Krahl
,
F.
Durst
, and
C.
Zenger
, “
Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
,”
J. Turbul.
8
,
N32
(
2007
).
83.
J.
Jiménez
, “
Machine-aided turbulence theory
,”
J. Fluid Mech.
854
,
R1
(
2018
).
84.
W.
Noll
, “
A mathematical theory of the mechanical behavior of continuous media
,”
Arch. Ration. Mech. Anal.
2
,
197
226
(
1958
).
85.
G.
Haller
, “
An objective definition of a vortex
,”
J. Fluid Mech.
525
,
1
26
(
2005
).
86.
N.
Geneva
and
N.
Zabaras
, “
Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks
,”
J. Comput. Phys.
383
,
125
147
(
2019
).
87.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
88.
K.
Hanjalic
and
B. E.
Launder
, “
Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence
,”
J. Fluid Mech.
74
,
593
610
(
1976
).
89.
Z.
Yang
and
T.-H.
Shih
, “
New time scale based k-ε model for near-wall turbulence
,”
AIAA J.
31
,
1191
1198
(
1993
).
90.
T.
Craft
,
B.
Launder
, and
K.
Suga
, “
Development and application of a cubic eddy-viscosity model of turbulence
,”
Int. J. Heat Fluid Flow
17
,
108
115
(
1996
).
91.
U.
Goldberg
and
D.
Apsley
, “
A wall-distance-free low Re k-ϵ turbulence model
,”
Comput. Method Appl. Mech. Eng.
145
,
227
238
(
1997
).
92.
M. M.
Rahman
,
R. K.
Agarwal
,
M. J.
Lampinen
, and
T.
Siikonen
, “
Improvements to Rahman-Agarwal-Siikonen one-equation turbulence model based on k-ε closure
,” AIAA Paper No. 2014-3331,
2014
.
93.
P. A.
Durbin
, “
Near-wall turbulence closure modeling without ‘damping functions’
,”
Theor. Comp. Fluid Dyn.
3
,
1
13
(
1991
).
94.
P. A.
Durbin
and
C. G.
Speziale
, “
Realizability of second-moment closure via stochastic analysis
,”
J. Fluid Mech.
280
,
395
407
(
1994
).
95.
S. S.
Girimaji
, “
A new perspective on realizability of turbulence models
,”
J. Fluid Mech.
512
,
191
210
(
2004
).
96.
K.
Inagaki
,
T.
Ariki
, and
F.
Hamba
, “
Higher-order realizable algebraic Reynolds stress modeling based on the square root tensor
,”
Phys. Rev. Fluids
4
,
114601
(
2019
).
97.
U.
Schumann
, “
Realizability of Reynolds-stress turbulence models
,”
Phys. Fluids
20
,
721
725
(
1977
).
98.
T. B.
Gatski
and
C. G.
Speziale
, “
On the explicit algebraic stress models for complex turbulent flows
,”
J. Fluid Mech.
254
,
59
78
(
1993
).
99.
M. M.
Rahman
,
P.
Rautaheimo
, and
T.
Siikonen
, “
Modifications for an explicit algebraic stress model
,”
Int. J. Numer. Methods Fluids
35
,
221
245
(
2001
).
100.
K.
Iwamoto
,
Y.
Suzuki
, and
N.
Kasagi
, “
Reynolds number effect on wall turbulence: Toward effective feedback control
,”
Int. J. Heat Fluid Flow
23
,
678
–689 (
2002
).
101.
S.
Hoyas
and
J.
Jiménez
, “
Reynolds number effects on the Reynolds-stress budgets in turbulent channels
,”
Phys. Fluids
20
,
101511
(
2008
).
102.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
103.
R.
Vinuesa
,
A.
Noorani
,
A.
Lozano-Duran
,
G. K.
El Khoury
,
P.
Schlatter
,
P. F.
Fischer
, and
H. M.
Nagib
, “
Aspect ratio effects in turbulent duct flows studied through direct numerical simulation
,”
J. Turbul.
15
,
677
706
(
2014
).
104.
R.
Vinuesa
,
P.
Schlatter
, and
H. M.
Nagib
, “
On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows
,”
J. Turbul.
16
,
588
606
(
2015
).
105.
R.
Vinuesa
,
P.
Schlatter
, and
H.
Nagib
, “
Secondary flow in turbulent ducts with increasing aspect ratio
,”
Phys. Rev. Fluids
3
,
054606
(
2018
).
106.
D.
Arthur
and
S.
Vassilvitskii
, “
K-means++: The advantages of careful seeding
,” in
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA, Philadelphia, USA,
2007
), pp.
1027
1035
.
107.
X.
Chen
,
F.
Hussain
, and
Z. S.
She
, “
Non-universal scaling transition of momentum cascade in wall turbulence
,”
J. Fluid Mech.
871
,
R2
(
2019
).
108.
K. M.
He
,
X. Y.
Zhang
,
S. Q.
Ren
, and
J.
Sun
, “
Identity mappings in deep residual networks
,” in
European Conference on Computer Vision
(ECCV, Amsterdam, Netherlands,
2016
), pp.
630
645
.
109.
B.
Chang
,
L.
Meng
,
E.
Haber
,
F.
Tung
, and
D.
Begert
, “
Multi-level residual networks from dynamical systems view
,” in
6th International Conference on Learning Representations
(ICLR, New York, USA,
2018
).
110.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
3rd International Conference on Learning Representation
(ICLR, San Diego, USA,
2015
).
111.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
112.
D.
Hendrycks
and
K.
Gimpel
, “
Gaussian error linear units
,” arXiv:1606.08415 (
2016
).
113.
V.
Nair
and
G. E.
Hinton
, “
Rectified linear units improve restricted Boltzmann machines
,” in
Proceedings of the 27th International Conference on Machine Learning
(ICML, Haifa, Israel,
2010
).
114.
D.-A.
Clevert
,
T.
Unterthiner
, and
S.
Hochreiter
, “
Fast and accurate deep network learning by exponential linear units
,” in
4th International Conference on Learning Representation
(ICLR, San Juan, Spain,
2016
).
115.
P.
Bradshaw
, “
Turbulent secondary flows
,”
Annu. Rev. Fluid Mech.
19
,
53
74
(
1987
).
116.
K.
Musgrave
,
S.
Belongie
, and
S.-N.
Lim
, “
A metric learning reality check
,” arXiv:2003.08505 (
2020
).
117.
J.
Wu
,
H.
Xiao
,
R.
Sun
, and
Q.
Wang
, “
Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned
,”
J. Fluid Mech.
869
,
553
586
(
2019
).
118.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
119.
B. P.
Brener
,
M. A.
Cruz
,
R. L.
Thompson
, and
R. P.
Anjos
, “
Conditioning and accurate solutions of Reynolds average Navier–Stokes equations with data-driven turbulence closures
,”
J. Fluid Mech.
915
,
A110
(
2021
).
120.
C.
Cambon
and
J. F.
Scott
, “
Linear and nonlinear models of anisotropic turbulence
,”
Annu. Rev. Fluid Mech.
31
,
1
53
(
1999
).
121.
A. A.
Mishra
and
S. S.
Girimaji
, “
Toward approximating non-local dynamics in single-point pressure–strain correlation closures
,”
J. Fluid Mech.
811
,
168
188
(
2017
).
122.
P. M.
Bevilaqua
and
P. S.
Lykoudis
, “
Turbulence memory in self-preserving wakes
,”
J. Fluid Mech.
89
,
589
606
(
1978
).
123.
R. H.
Kraichnan
, “
Lagrangian-history closure approximation for turbulence
,”
Phys. Fluids
8
,
575
598
(
1965
).
124.
R. H.
Kraichnan
, “
Direct-interaction approximation for shear and thermally driven turbulence
,”
Phys. Fluids
7
,
1048
1062
(
1964
).
125.
P. E.
Hamlington
and
W. J. A.
Dahm
, “
Reynolds stress closure including nonlocal and nonequilibrium effects in turbulent flows
,” in
39th AIAA Fluid Dynamics Conference
(
AIAA
,
2009
), p.
4162
.
126.
P. Y.
Chou
, “
On velocity correlations and the solutions of the equations of turbulent fluctuation
,”
Q. Appl. Math.
3
,
38
54
(
1945
).
127.
C. G.
Speziale
, “
On nonlinear k-l and k-ε models of turbulence
,”
J. Fluid Mech.
178
,
459
475
(
1987
).
128.
D. B.
Taulbee
, “
An improved algebraic Reynolds stress model and corresponding nonlinear stress model
,”
Phys. Fluids
4
,
2555
2561
(
1992
).
129.
P. E.
Hamlington
and
W. J. A.
Dahm
, “
Reynolds stress closure for nonequilibrium effects in turbulent flows
,”
Phys. Fluids
20
,
115101
(
2008
).
You do not currently have access to this content.