We provide a detailed comparison of the two-dimensional, temporal, and spatiotemporal linearized analyses of the viscoelastic free shear flows (inhomogeneous flows with mean velocity gradients that develop in the absence of boundaries) in the limit of low to moderate Reynolds number and elasticity number obeying four different types of stress–strain constitutive equations: Oldroyd-B, upper convected Maxwell, Johnson–Segalman (JS), and linear Phan-Thien–Tanner (PTT). The resulting fourth-order Orr–Sommerfeld equation is transformed into a set of six auxiliary equations that are numerically integrated via the compound matrix method. The temporal stability analysis suggests (a) elastic stabilization at higher values of elasticity number {shown previously in the dilute regime [Sircar and Bansal, “Spatiotemporal linear stability of viscoelastic free shear flows: Dilute regime,” Phys. Fluids 31, 084104 (2019)]} and (b) a nonmonotonic instability pattern at low to intermediate values of elasticity number for the JS as well as the PTT model. To comprehend the effect of elasticity, Reynolds number, and viscosity on the temporal stability curves of the PTT model, we consider a fourth parameter, the centerline shear rate, ζc. The “JS behavior” is recovered below a critical value of ζc, and above this critical value, the PTT base stresses (relative to the JS model) are attenuated thereby explaining the stabilizing influence of elasticity. The Briggs idea of analytic continuation is deployed to classify regions of temporal stability and absolute and convective instabilities, as well as evanescent modes, and the results are compared with previously conducted experiments for Newtonian as well as viscoelastic flows past a cylinder. The phase diagrams reveal the two familiar regions of inertial turbulence modified by elasticity and elastic turbulence as well as (a recently substantiated) region of elastoinertial turbulence and the unfamiliar temporally stable region for intermediate values of Reynolds and elasticity number.

1.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
1026
(
2005
).
2.
C. M.
White
and
M. G.
Mungal
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Ann. Rev. Fluid Mech.
40
,
235
256
(
2008
).
3.
S.
Sircar
,
J.
Li
, and
Q.
Wang
, “
Biaxial phases of bent-core liquid crystal polymers in shear flows
,”
Commun. Math. Sci.
8
(
3
),
697
720
(
2010
).
4.
S.
Sircar
and
Q.
Wang
, “
Transient rheological responses in sheared biaxial liquid crystals
,”
Rheol. Acta
49
(
7
),
699
717
(
2010
).
5.
S.
Sircar
and
A.
Roberts
, “
Ion mediated crosslink driven mucous swelling kinetics
,”
Discrete Contin. Dyn. Syst., Ser. B
21
(
6
),
1937
1951
(
2016
).
6.
S.
Sircar
,
E.
Aisenbrey
,
S. J.
Bryant
, and
D. M.
Bortz
, “
Determining equilibrium osmolarity in poly(ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage
,”
J. Theor. Biol.
364
,
397
406
(
2015
).
7.
S.
Sircar
,
J. G.
Younger
, and
D. M.
Bortz
, “
Sticky surface: Sphere-sphere adhesion dynamics
,”
J. Biol. Dyn.
9
,
79
89
(
2015
).
8.
S.
Sircar
and
A. J.
Roberts
, “
Surface deformation and shear flow in ligand mediated cell adhesion
,”
J. Math. Biol.
73
(
4
),
1035
1052
(
2016
).
9.
S.
Sircar
,
G.
Nguyen
,
A.
Kotousov
, and
A. J.
Roberts
, “
Ligand-mediated adhesive mechanics of two static, deformed spheres
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
39
(
10
),
1
9
(
2016
).
10.
P. K.
Ray
and
T. A.
Zaki
, “
Absolute instability in viscoelastic mixing layers
,”
Phys. Fluids
26
,
014103
(
2014
).
11.
A.
Groisman
and
V.
Steinberg
, “
Mechanism of elastic instability in Couette flow of polymer solutions: Experiments
,”
Phys. Fluids
10
,
2451
(
1998
).
12.
Z.
Yu
and
N.
Phan-Thien
, “
Three-dimensional roll-up of a viscoelastic mixing layer
,”
J. Fluid Mech.
500
,
29
53
(
2004
).
13.
P.
Huerre
and
P. A.
Monkewitz
, “
Absolute and convective instabilities in free shear layers
,”
J. Fluid Mech.
159
,
151
168
(
1985
).
14.
R.
Patne
and
V.
Shankar
, “
Absolute and convective instabilities in combined Couette-Poiseuille flow past a neo-Hookean solid
,”
Phys. Fluids
29
,
124104
(
2017
).
15.
M. P.
Juniper
,
O.
Tammisola
, and
F.
Lundell
, “
The local and global stability of confined planar wakes at intermediate Reynolds number
,”
J. Fluid Mech.
686
,
218
238
(
2011
).
16.
T.
Shoji
,
E. W.
Harris
,
A.
Bernard
,
S. G.
Schein
, and
A. R.
Karagozian
, “
On the origins of transverse jet shear layer instability transition
,”
J. Fluid Mech.
890
,
A7-1
(
2020
).
17.
H.
Oertel
, Jr.
, “
Wakes behind blunt bodies
,”
Ann. Rev. Fluid Mech.
22
,
539
564
(
1990
).
18.
I.
Delbende
and
J. M.
Chomaz
, “
Nonlinear convective/absolute instabilities in parallel two-dimensional wakes
,”
Phys. Fluids
10
,
2724
(
1998
).
19.
J. J.
Healy
, “
Destabilizing effects of confinement on homogeneous mixing layers
,”
J. Fluid Mech.
623
,
241
271
(
2009
).
20.
B.
Pier
, “
Local and global instabilities in the wake of a sphere
,”
J. Fluid Mech.
603
,
39
61
(
2008
).
21.
I.
Vihinen
,
A. M.
Honohan
, and
S. P.
Lin
, “
Image of absolute instability in a liquid jet
,”
Phys. Fluids
9
,
3117
(
1997
).
22.
C.
Pipe
, “
Experiments investigating the effects of fluid elasticity on laminar vortex shedding from a cylinder
,” M.S. thesis. EPFL (École polytechnique fédérale de Lausanne), Lausanne, Switzerland,
2005
.
23.
P. K.
Ray
and
T. A.
Zaki
, “
Absolute/convective instability of planar viscoelastic jets
,”
Phys. Fluids
27
,
014110
(
2015
).
24.
A.
Alhushaybar
and
J.
Uddin
, “
Convective and absolute instability of viscoelastic liquid jets in the presence of gravity
,”
Phys. Fluids
31
,
044106
(
2019
).
25.
A.
Alhushaybar
and
J.
Uddin
, “
Absolute instability of free-falling viscoelastic liquid jets with surfactants
,”
Phys. Fluids
32
,
013102
(
2020
).
26.
M. C.
Guimaraes
,
N.
Pimentel
,
F. T.
Pinho
, and
C. B.
da Silva
, “
Direct numerical simulations of turbulent viscoelastic jets
,”
J. Fluid Mech.
899
,
A11
(
2020
).
27.
K.
Kupfer
,
A.
Bers
, and
A. K.
Ram
, “
The cusp map in the complex-frequency plane for absolute instability
,”
Phys. Fluids
30
(
10
),
3075
3082
(
1987
).
28.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Fluid Mechanics
(
Wiley Intersciences
,
1987
), Vol.
1
.
29.
V.
Steinberg
, “
Role of thermal noise in dynamics of non-equilibrium systems: Macro-, meso- and microscopic
,”
J. Stat. Phys.
175
,
664
680
(
2019
).
30.
D. S.
Malkus
,
J. A.
Nohel
, and
B. J.
Plohr
, “
Analysis of new phenomena in shear flow of non-Newtonian fluids
,”
SIAM J. Appl. Math.
51
(
4
),
899
929
(
1991
).
31.
J. D.
Evans
, “
Re-entrant corner behavior of the PTT fluid with a solvent viscosity
,”
J. Non-Newtonian Fluid Mech.
165
(
9
),
527
537
(
2010
).
32.
J.
Azaiez
and
G. M.
Homsy
, “
Linear stability of free shear flow of viscoelastic liquids
,”
J. Fluid Mech.
268
,
37
69
(
1994
).
33.
S.
Sircar
and
D.
Bansal
, “
Spatiotemporal linear stability of viscoelastic free shear flows: Dilute regime
,”
Phys. Fluids
31
,
084104
(
2019
).
34.
T. K.
Sengupta
,
Instabilities of Flows and Transition to Turbulence
(
CRC Press
,
2012
).
35.
B. S.
Ng
and
W. H.
Reid
, “
The compound matrix method for ordinary differential equations
,”
J. Comput. Phys.
58
,
209
228
(
1985
).
36.
T.
Hagen
and
M.
Renardy
, “
Boundary layer analysis of the Phan-Thien-Tanner and Giesekus model in high Weissenberg number flow
,”
J. Non-Newtonian Fluid Mech.
73
,
181
189
(
1997
).
37.
L. L.
Ferras
,
M. L.
Morgado
,
M.
Rebelo
,
G. H.
McKinley
, and
A. M.
Afonso
, “
A generalised Phan-Thien-Tanner model
,”
J. Non-Newtonian Fluid Mech.
269
,
88
89
(
2019
).
38.
S.
Taneda
, “
Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers
,”
J. Phys. Soc. Jpn.
11
(
3
),
302
307
(
1956
).
39.
P. A.
Monkewitz
, “
The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers
,”
Phys. Fluids
31
(
5
),
999
1006
(
1988
).
40.
J. M.
Chomaz
,
P.
Huerre
, and
L. G.
Redekopp
, “
Bifurcations to local and global modes in spatially developing flows
,”
Phys. Rev. Lett.
60
(
1
),
25
28
(
1988
).
41.
M.
Provansal
,
C.
Mathis
, and
L.
Boyer
, “
Bénard-von Kármán instability: Transient and forced regimes
,”
J. Fluid Mech.
182
,
1
22
(
1987
).
42.
V. N.
Kalashnikov
and
A. M.
Kudin
, “
Kármán vortices in the flow of drag reducing polymer solutions
,”
Nature
225
,
445
446
(
1970
).
43.
O.
Cadot
and
S.
Kumar
, “
Experimental characterization of viscoelastic effects on two- and three-dimensional shear instabilities
,”
J. Fluid Mech.
416
,
151
172
(
2000
).
44.
G. H.
McKinley
,
R. C.
Armstrong
, and
R. A.
Brown
, “
The wake instability in viscoelastic flow past confined circular cylinders
,”
Philos. Trans. R. Soc., A
344
,
265
304
(
1993
).
45.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids I. Identification and demarcation of flow regimes
,”
J. Non-Newtonian Fluid Mech.
110
,
143
176
(
2003
).
46.
I.
Chaudhary
,
P.
Garg
,
G.
Subramanian
, and
V.
Shankar
, “
Linear instability of viscoelastic pipe flow
,”
J. Fluid Mech.
908
,
A11
(
2021
).
47.
D.
Samanta
,
Y.
Dubief
,
M.
Holzner
,
C.
Schafer
,
A.
Morozov
,
C.
Wagner
, and
B.
Hof
, “
Elasto-inertial turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10557
(
2013
).
48.
A.
Bistagnino
,
G.
Boffetta
,
A.
Celani
,
A.
Mazzino
,
A.
Puliafito
, and
M.
Vergassola
, “
Nonlinear dynamics of the viscoelastic Kolmogorov flow
,”
J. Fluid Mech.
590
,
61
80
(
2007
).
You do not currently have access to this content.