This study envisages undertaking a comprehensive simulation of the flow past an impulsively started circular cylinder with special emphasis on vortex dynamics in the secondary and tertiary level. A recently developed second order spatially and temporally accurate compact finite difference scheme on a nonuniform Cartesian grid has been used to discretize the transient Navier–Stokes equations governing the flow. The grid is generated in such a way that the cylinder boundary passes through the grid points, thus dispensing with the need to use the immersed interface approach on a Cartesian grid. High quality simulations are accomplished for a wide range of Reynolds numbers (Re) from 5Re10000 in the laminar regime, including the periodic flow characterized by von Kármán vortex street. The α, β, sub-α, and sub-β phenomena, which are the trademark of the secondary and tertiary vortex dynamics associated with such flows, are studied in detail. Our results are compared with existing experimental and numerical results, and close comparison is obtained in all the cases exemplifying their accuracy. In the process, for the first time, we also provide a tabular documentation of the early stages of the flow for Re700.

1.
P.
Bearman
, “
Bluff body hydrodynamics
,”
Twenty-First Symposium on Naval Hydrodynamics
(1997), pp.
561
579
.
2.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
(
1
),
477
539
(
1996
).
3.
A.
Roshko
, “
Perspectives on bluff body aerodynamic
,”
J. Wind Eng. Ind. Aerodyn.
49
(
1
),
79
100
(
1993
).
4.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1993
).
5.
R.
Bouard
and
M.
Coutanceau
, “
The early stage of development of the wake behind an impulsively started cylinder for
40<Re<104,”
J. Fluid Mech.
101
,
583
607
(
1980
).
6.
T. P.
Loc
and
R.
Bouard
, “
Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder: A comparison with experimental visualization and measurements
,”
J. Fluid Mech.
160
,
93
117
(
1985
).
7.
Y. V. S. S.
Sanyasiraju
and
V.
Manjula
, “
Flow past an impulsively started circular cylinder using a higher-order semicompact scheme
,”
Phys. Rev. E
72
(
1
),
016709
(
2005
).
8.
J. C.
Kalita
and
S.
Sen
, “
α-, β-phenomena in the post-symmetry break for the flow past a circular cylinder
,”
Phys. Fluids
29
(
3
),
033603
(
2017
).
9.
D. J.
Tritton
, “
Experiments on the flow past a circular cylinder at low Reynolds number
,”
J. Fluid Mech.
6
(
4
),
547
567
(
1959
).
10.
J.
Kalita
and
S.
Sen
, “
Unsteady separation leading to secondary and tertiary vortex dynamics: The sub-α and sub-β phenomena
,”
J. Fluid Mech.
730
,
19
51
(
2013
).
11.
J. C.
Kalita
, “
Effect of boundary location on the steady flow past an impulsively started circular cylinder
,”
J. Comput. Sci. Math.
5
(
3
),
252
279
(
2014
).
12.
C.
Jackson
, “
A finite-element study of the onset of vortex shedding in flow past variously shaped bodies
,”
J. Fluid Mech.
182
,
23
45
(
1987
).
13.
S.
Sen
,
S.
Mittal
, and
G.
Biswas
, “
Steady separated flow past a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
620
(
2009
),
89
119
(
2009
).
14.
D.
Kim
and
H.
Choi
, “
A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids
,”
J. Comput. Phys.
162
(
2
),
411
428
(
2000
).
15.
Y.
Liu
,
W.
Zhang
,
Y.
Jiang
, and
Z.
Ye
, “
A high-order finite volume method on unstructured grids using RBF reconstruction
,”
Comput. Math. Appl.
72
(
4
),
1096
1117
(
2016
).
16.
P.
Koumoutsakos
and
A.
Leonard
, “
High-resolution simulations of the flow around an impulsively started cylinder using vortex methods
,”
J. Fluid Mech.
296
,
1
38
(
1995
).
17.
Y.
Wang
and
M. A.
Maksoud
, “
Application of the remeshed vortex method to the simulation of 2D flow around circular cylinder and foil
,”
Ship Technol. Res.
65
(
2
),
79
86
(
2018
).
18.
G. H.
Cottet
and
P. D.
Koumoutsakos
,
Vortex Methods: Theory and Practice
(
Cambridge University Press
,
2000
).
19.
X.
He
and
G.
Doolen
, “
Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder
,”
J. Comput. Phys.
134
(
2
),
306
315
(
1997
).
20.
X. D.
Niu
,
Y. T.
Chew
, and
C.
Shu
, “
Simulation of flows around an impulsively started circular cylinder by Taylor series expansion and least squares-based lattice Boltzmann method
,”
J. Comput. Phys.
188
(
1
),
176
193
(
2003
).
21.
Y.
Li
,
R.
Shock
,
R.
Zhang
, and
H.
Chen
, “
Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method
,”
J. Fluid Mech.
519
,
273
300
(
2004
).
22.
X.
He
and
G.
Doolen
, “
Lattice Boltzmann method on a curvilinear coordinate system: Vortex shedding behind a circular cylinder
,”
Phys. Rev. E
56
(
1
),
434
440
(
1997
).
23.
J. C.
Kalita
and
R. K.
Ray
, “
A transformation-free HOC scheme for incompressible viscous flows past an impulsively started circular cylinder
,”
J. Comput. Phys.
228
(
17
),
5207
5236
(
2009
).
24.
B. N.
Rajani
,
A.
Kandasamy
, and
S.
Majumdar
, “
Numerical simulation of laminar flow past a circular cylinder
,”
Appl. Math. Model.
33
(
3
),
1228
1247
(
2009
).
25.
K.
Taira
and
T.
Colonius
, “
The immersed boundary method: A projection approach
,”
J. Comput. Phys.
225
(
2
),
2118
2137
(
2007
).
26.
M. N.
Linnick
and
H. F.
Fasel
, “
A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains
,”
J. Comput. Phys.
204
(
1
),
157
192
(
2005
).
27.
E. M.
Kolahdouz
,
A. P. S.
Bhalla
,
B. A.
Craven
, and
B. E.
Griffith
, “
An immersed interface method for discrete surfaces
,”
J. Comput. Phys.
400
(
1
),
108854
108837
(
2020
).
28.
D.
Russell
and
Z. J.
Wang
, “
A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow
,”
J. Comput. Phys.
191
(
1
),
177
205
(
2003
).
29.
A. L. F. L. E.
Silva
,
A.
Silveira-Neto
, and
J. J. R.
Damasceno
, “
Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
,”
J. Comput. Phys.
189
(
2
),
351
370
(
2003
).
30.
D.
Calhoun
, “
A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions
,”
J. Comput. Phys.
176
(
2
),
231
275
(
2002
).
31.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
32.
M.
Ma
,
W. X.
Huang
, and
C. X.
Xu
, “
A dynamic wall model for large eddy simulation of turbulent flow over complex/moving boundaries based on the immersed boundary method
,”
Phys. Fluids
31
(
11
),
115101
(
2019
).
33.
S.
Tao
,
Q.
He
,
L.
Wang
,
S.
Huang
, and
B.
Chen
, “
A non-iterative direct-forcing immersed boundary method for thermal discrete unified gas kinetic scheme with Dirichlet boundary conditions
,”
Int. J. Heat Mass Transfer
137
,
476
488
(
2019
).
34.
P.
Kumar
and
J. C.
Kalita
, “
An efficient ψv scheme for two-dimensional laminar flow past bluff bodies on compact nonuniform grids
,”
Int. J. Numer. Methods Fluids
92
(
1
),
1723
1752
(
2020
).
35.
M. M.
Gupta
and
J. C.
Kalita
, “
A new paradigm for solving Navier-Stokes equations: Streamfunction-velocity formulation
,”
J. Comput. Phys.
207
,
52
68
(
2005
).
36.
M. M.
Gupta
and
J. C.
Kalita
, “
New paradigm continued: Further computation with stream function-velocity formulation for solving Navier-Stokes equations
,”
Commun. Appl. Anal.
10
(
4
),
461
490
(
2006
).
37.
J. C.
Kalita
and
M. M.
Gupta
, “
A stream function-velocity approach for 2D transient incompressible viscous flows
,”
Int. J. Numer. Methods Fluids
62
(3),
237
266
(
2010
).
38.
M.
Ben-Artzi
,
J.-P.
Croisille
, and
D.
Fishelov
, “
A high order compact scheme for the pure-streamfunction formulation of the Navier-Stokes equations
,”
J. Sci. Comput.
42
,
216
250
(
2010
).
39.
S.
Sen
,
J. C.
Kalita
, and
M. M.
Gupta
, “
A robust implicit compact scheme for two-dimensional unsteady flows with a biharmonic stream function formulation
,”
Comput. Fluids
84
,
141
163
(
2013
).
40.
S.
Dutta
,
P.
Kumar
, and
J. C.
Kalita
, “
Streamfunction-velocity computation of natural convection around heated bodies place in a square enclosure
,”
Int. J. Heat Mass Transf.
152
,
119550
(
2020
).
41.
J. C.
Kalita
and
S.
Sen
, “
The biharmonic approach for unsteady flow past an impulsively started circular cylinder
,”
Commun. Comput. Phys.
12
(
4
),
1163
1182
(
2012
).
42.
J. D.
Anderson
,
Computational Fluid Dynamics: The Basics with Applications
(
McGraw-Hill Education
,
1995
).
43.
J. D.
Hoffmann
,
Numerical Methods for Engineers and Scientists
(
Marcel Dekker Inc
.,
New York
,
2001
), pp.
297
298
.
44.
D.
Anderson
,
J. C.
Tannehill
, and
R. H.
Pletcher
,
Computational Fluid Mechanics and Heat Transfer
(
CRC Press
,
2012
).
45.
S.
Taneda
, “
Flow visualization
,”
Proc. Jpn. Soc. Civil Eng.
387
,
1
10
(
1987
).
46.
M.
Van Dyke
,
An Album of Fluid Motion
(
The Parabolic Press
,
Stanford
,
1982
).
47.
I. M.
Kozlov
,
K. V.
Dobrego
, and
N. N.
Gnesdilov
, “
Application of RES methods for computation of hydrodynamic flows by an example of a 2D flow past circular cylinder for Re = 5–200
,”
Int. J. Heat Mass transfer
54
,
887
893
(
2011
).
48.
M.
Coutanceau
and
R.
Bouard
, “
Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow
,”
J. Fluid Mech.
79
(
2
),
257
272
(
1977
).
49.
S.
Sen
and
J. C.
Kalita
, “
A 4OEC scheme for the biharmonic steady Navier-Stokes equations in non-rectangular domains
,”
Comput. Phys. Commun.
196
,
113
133
(
2015
).
50.
P.
Kumar
and
J. C.
Kalita
, “
A transformation-free ψ-v formulation of the Navier-Stokes equations on compact nonuniform grids
,”
J. Comput. Appl. Math.
353
,
292
317
(
2019
).
51.
H.
Jiang
and
L.
Cheng
, “
Transition to the secondary vortex street in the wake of a circular cylinder
,”
J. Fluid Mech.
867
,
691
722
(
2019
).
52.
R.
Franke
,
W.
Rodi
, and
B.
Schönung
, “
Numerical calculation of laminar vortex-shedding flow past cylinders
,”
J. Wind Eng. Ind. Aerodyn.
35
,
237
257
(
1990
).
53.
D. V.
Le
,
B. C.
Khoo
, and
J.
Peraire
, “
An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries
,”
J. Comput. Phys.
220
,
109
138
(
2006
).
54.
P. A.
Berthelsen
and
O. M.
Faltinsen
, “
A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries
,”
J. Comput. Phys.
227
,
4354
4397
(
2008
).
55.
Z.
Wang
,
J.
Fan
, and
K.
Cen
, “
Immersed boundary method for the simulation of 2D viscous flow based on vorticity-velocity formulations
,”
J. Comput. Phys.
228
,
1504
1520
(
2009
).
56.
S.
Sen
, “
Compact biharmonic computation of the Navier-Stokes equations: Extension to complex flows
,” Ph.D. thesis,
2012
.
57.
S.
Mittal
and
B.
Kumar
, “
Flow past a rotating cylinder
,”
J. Fluid Mech.
476
,
303
334
(
2003
).
You do not currently have access to this content.