In this study, a high-order implicit least squares-based finite difference-finite volume (ILSFD-FV) method with a lattice Boltzmann flux solver is presented for the simulation of two-dimensional incompressible flows on unstructured grids. In this method, a high-order polynomial based on Taylor series expansion is applied within each control cell, where the unknown spatial derivatives at each cell center are approximated by the least squares-based finite difference scheme. The volume integral of the high-order polynomial over the control cell results in a pre-multiplied coefficient matrix in the time-dependent term. This makes the high-order method be implicit in nature. With this feature, a high-order implicit Runge–Kutta time integration scheme, namely, the explicit first-stage singly diagonally implicit Runge–Kutta (ESDIRK) scheme, is applied to obtain the time-accurate solutions for flow problems. The non-linear system of equations arising from each ESDIRK stage except for the first explicit stage is solved by a dual time stepping approach. A matrix-free lower-upper symmetric Gauss–Seidel solver is then used to efficiently march the solution in the pseudo time. The present high-order ILSFD-FV method is verified and validated by both steady and unsteady 2D incompressible flow problems. Numerical results indicate that the developed implicit method outperforms its explicit counterpart in terms of the convergence property and computational efficiency. The speedup ratio of the computational effort is about 3–22.

1.
T. J.
Barth
, “
Recent developments in high-order k-exact reconstruction on unstructured meshes
,” AIAA Paper No. 93-0668,
1993
.
2.
T. J.
Barth
, “
Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations
,” AGARD Report No.
787
,
1992
.
3.
Q.
Wang
,
Y. X.
Ren
, and
W.
Li
, “
Compact high order finite volume method on unstructured grids II: Extension to two-dimensional Euler equations
,”
J. Comput. Phys.
314
,
883
908
(
2016
).
4.
Q.
Wang
,
Y. X.
Ren
,
J.
Pan
, and
W.
Li
, “
Compact high order finite volume method on unstructured grids III: Variational reconstruction
,”
J. Comput. Phys.
337
,
1
26
(
2017
).
5.
O.
Friedrich
, “
Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids
,”
J. Comput. Phys.
144
,
194
212
(
1998
).
6.
C. F.
Ollivier-Gooch
, “
Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-square reconstruction
,”
J. Comput. Phys.
133
,
6
17
(
1997
).
7.
R.
Abgrall
, “
On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation
,”
J. Comput. Phys.
114
,
45
58
(
1994
).
8.
C.
Hu
and
C. W.
Shu
, “
Weighted essentially non-oscillatory schemes on triangular meshes
,”
J. Comput. Phys.
150
,
97
127
(
1999
).
9.
R.
Abgrall
, “
An essentially non-oscillatory reconstruction procedure on finite-element type meshes: Application to compressible flows
,”
Comput. Methods Appl. Mech. Eng.
116
,
95
101
(
1994
).
10.
F.
Bassi
and
S.
Rebay
, “
A higher-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations
,”
J. Comput. Phys.
131
,
267
279
(
1997
).
11.
F.
Bassi
and
S.
Rebay
, “
A higher-order accurate discontinuous finite element solution of the 2D Euler equations
,”
J. Comput. Phys.
138
,
251
285
(
1997
).
12.
B.
Cockburn
and
C. W.
Shu
, “
The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional system
,”
J. Comput. Phys.
141
,
199
224
(
1998
).
13.
J.
Qiu
and
C. W.
Shu
, “
Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: One-dimensional case
,”
J. Comput. Phys.
193
,
115
135
(
2004
).
14.
J.
Zhu
,
J.
Qiu
,
C. W.
Shu
, and
M.
Dumbser
, “
Runge–Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes
,”
J. Comput. Phys.
227
,
4330
4353
(
2008
).
15.
J.
Zhu
,
X.
Zhong
,
C. W.
Shu
, and
J.
Qiu
, “
Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes
,”
J. Comput. Phys.
248
,
200
220
(
2013
).
16.
R.
Hartmann
, “
Numerical analysis of higher order discontinuous Galerkin finite element methods
,” in
VKI Lecture Series, edited by H. Deconinck
(Von Karman Institute for Fluid Dynamics, RhodeSaint Genèse, Belgium,
2008
), Vol.
8
, pp.
13
17
.
17.
Z. J.
Wang
,
Y.
Liu
,
G.
May
, and
A.
Jameson
, “
Spectral difference method for unstructured grids II: Extension to the Euler equations
,”
J. Sci. Comput.
32
,
45
71
(
2007
).
18.
C.
Ma
,
J.
Wu
, and
T.
Zhang
, “
A high order spectral difference-based phase field lattice Boltzmann method for incompressible two-phase flows
,”
Phys. Fluids
32
,
122113
(
2020
).
19.
Z. J.
Wang
and
Y.
Liu
, “
Spectral (finite) volume method for conservation laws on unstructured grids II: Extension to two dimensional scalar equation
,”
J. Comput. Phys.
179
,
665
697
(
2002
).
20.
Z. J.
Wang
and
Y.
Liu
, “
Spectral (finite) volume method for conservation laws on unstructured grids III: One-dimensional systems and partition optimization
,”
J. Sci. Comput.
20
,
137
157
(
2004
).
21.
Z. J.
Wang
and
Y.
Liu
, “
Spectral (finite) volume method for conservation laws on unstructured grids IV: Extension to two dimensional systems
,”
J. Comput. Phys.
194
,
716
741
(
2004
).
22.
Y.
Sun
,
Z. J.
Wang
, and
Y.
Liu
, “
Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow
,”
J. Comput. Phys.
215
,
41
58
(
2006
).
23.
Z. J.
Wang
, “
Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation
,”
J. Comput. Phys.
178
,
210
251
(
2002
).
24.
Z. J.
Wang
and
H.
Gao
, “
A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids
,”
J. Comput. Phys.
228
,
8161
8186
(
2009
).
25.
H.
Gao
and
Z. J.
Wang
, “
A conservative correction procedure via reconstruction formulation with the chain-rule divergence evaluation
,”
J. Comput. Phys.
232
,
7
13
(
2013
).
26.
T. J.
Barth
and
P.
Frederichson
, “
Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction
,” in
28th Aerospace Sciences Meeting
, Paper No. 90-0013 (
1990
).
27.
Y. Y.
Liu
,
C.
Shu
,
H. W.
Zhang
, and
L. M.
Yang
, “
A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids
,”
J. Comput. Phys.
401
,
109019
(
2019
).
28.
H.
Luo
,
J. D.
Baum
, and
R.
Löhner
, “
A fast, matrix-free implicit method for compressible flows on unstructured grids
,”
J. Comput. Phys.
146
,
664
690
(
1998
).
29.
M.
Cheng
,
G.
Wang
, and
H. H.
Mian
, “
Reordering of hybrid unstructured grids for an implicit Navier–Stokes solver based on openMP parallelization
,”
Comput. Fluids
110
,
245
253
(
2015
).
30.
R. F.
Chen
and
Z. J.
Wang
, “
An improved LU-SGS scheme with faster convergence for unstructured grids of arbitrary topology
,” AIAA Paper No. 99-0935,
1999
.
31.
A.
Jameson
, “
Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings
,” AIAA Paper No. 1991-1596,
1991
.
32.
C.
Cox
,
C.
Liang
, and
M. W.
Plesniak
, “
A high-order solver for unsteady incompressible Navier–Stokes equations using the flux reconstruction method on unstructured grids with implicit dual time stepping
,”
J. Comput. Phys.
314
,
414
435
(
2016
).
33.
H.
Bijl
,
M. H.
Carpenter
,
V. N.
Vatsa
, and
C. A.
Kennedy
, “
Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: Laminar flow
,”
J. Comput. Phys.
179
,
313
329
(
2002
).
34.
V.
Kazemi-Kamyab
,
A. H.
van Zuijlen
, and
H.
Bijl
, “
Analysis and application of high order implicit Runge–Kutta schemes to collocated finite volume discretization of the incompressible Navier–Stokes equations
,”
Comput. Fluids
108
,
107
115
(
2015
).
35.
Y.
Xia
,
X.
Liu
,
H.
Luo
, and
R.
Nourgaliev
, “
A third‐order implicit discontinuous Galerkin method based on a Hermite WENO reconstruction for time‐accurate solution of the compressible Navier–Stokes equations
,”
Int. J. Numer. Methods Fluids
79
,
416
435
(
2015
).
36.
H.
Ding
,
C.
Shu
, and
K. S.
Yeo
, “
Development of least square-based two-dimensional finite difference schemes and their application to simulate natural convection in a cavity
,”
Comput. Fluids
33
,
137
154
(
2004
).
37.
H.
Ding
,
C.
Shu
,
K. S.
Yeo
, and
D.
Xu
, “
Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method
,”
Comput. Methods Appl. Mech. Eng.
193
,
727
744
(
2004
).
38.
C.
Shu
,
Y.
Wang
,
C. J.
Teo
, and
J.
Wu
, “
Development of lattice Boltzmann flux solver for simulation of incompressible flows
,”
Adv. Appl. Math. Mech.
6
,
436
460
(
2014
).
39.
Y.
Wang
,
C.
Shu
, and
C. J.
Teo
, “
Development of LBGK and incompressible LBGK-based lattice Boltzmann flux solvers for simulation of incompressible flows
,”
Int. J. Numer. Methods Fluids
75
,
344
364
(
2014
).
40.
J. M.
Pérez
,
A.
Aguilar
, and
V.
Theofilis
, “
Lattice Boltzmann methods for global linear instability analysis
,”
Theor. Comput. Fluid Dyn.
31
,
643
664
(
2017
).
41.
S.
Hou
,
Q.
Zou
,
S.
Chen
,
G.
Doolen
, and
A. C.
Cogley
, “
Simulation of cavity flow by the lattice Boltzmann method
,”
J. Comput. Phys.
118
,
329
347
(
1995
).
42.
X.
He
and
L. S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier–Stokes equation
,”
J. Stat. Phys.
88
,
927
944
(
1997
).
43.
Z.
Chen
,
C.
Shu
,
L. M.
Yang
,
X.
Zhao
, and
N. Y.
Liu
, “
Immersed boundary-simplified thermal lattice Boltzmann method for incompressible thermal flows
,”
Phys. Fluids
32
,
013605
(
2020
).
44.
B.
Harikrishnan
,
Z.
Chen
, and
C.
Shu
, “
A new explicit immersed boundary method for simulation of fluid–solid interactions
,”
Adv. Appl. Math. Mech.
13
,
261
284
(
2021
).
45.
L. M.
Yang
,
C.
Shu
,
W. M.
Yang
, and
Y.
Wang
, “
A simplified circular function-based gas kinetic scheme for simulation of incompressible flows
,”
Int. J. Numer. Methods Fluids
85
,
583
598
(
2017
).
46.
L. M.
Yang
,
C.
Shu
,
Z.
Chen
,
Y. Y.
Liu
,
Y.
Wang
, and
X.
Shen
, “
High-order gas kinetic flux solver for simulation of two dimensional incompressible flows
,”
Phys. Fluids
33
,
017107
(
2021
).
47.
Z.
Chen
,
C.
Shu
,
Y.
Wang
,
L. M.
Yang
, and
D.
Tan
, “
A simplified lattice Boltzmann method without evolution of distribution function
,”
Adv. Appl. Math. Mech.
9
,
1
22
(
2017
).
48.
Y.
Sun
,
C.
Shu
,
C. J.
Teo
,
Y.
Wang
, and
L. M.
Yang
, “
Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows
,”
J. Comput. Phys.
300
,
492
519
(
2015
).
49.
L. Q.
Zhang
,
Z.
Chen
,
L. M.
Yang
, and
C.
Shu
, “
An improved discrete gas-kinetic scheme for two-dimensional viscous incompressible and compressible flows
,”
Phys. Fluids
31
,
066103
(
2019
).
50.
Z.
Chen
,
C.
Shu
, and
D.
Tan
, “
Highly accurate simplified lattice Boltzmann method
,”
Phys. Fluids
30
,
103605
(
2018
).
51.
U.
Ghia
,
K. N.
Ghia
, and
C. T.
Shin
, “
High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
411
(
1982
).
52.
E.
Tavakoli
,
B.
Lessani
, and
R.
Hosseini
, “
High-order pole-treatment in cylindrical coordinates for incompressible flow simulations with finite-difference collocated schemes
,”
J. Comput. Phys.
296
,
1
24
(
2015
).
53.
J.
Wang
and
C.
Zhou
, “
A novel immersed boundary method implemented by imposing reconstructed velocity on virtual boundary
,”
Adv. Appl. Math. Mech.
13
,
83
100
(
2021
).
54.
N.
Pellerin
,
S.
Leclaire
, and
M.
Reggio
, “
Solving incompressible fluid flows on unstructured meshes with the lattice Boltzmann flux solver
,”
Eng. Appl. Comput. Fluid Mech.
11
,
310
327
(
2017
).
55.
S. C. R.
Dennis
and
G. Z.
Chang
, “
Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100
,”
J. Fluid Mech.
42
,
471
489
(
1970
).
56.
R. K.
Shukla
,
M.
Tatineni
, and
X.
Zhong
, “
Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations
,”
J. Comput. Phys.
224
,
1064
1094
(
2007
).
57.
J.
Wu
and
C.
Shu
, “
Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications
,”
J. Comput. Phys.
228
,
1963
1979
(
2009
).
58.
X.
He
and
G.
Doolen
, “
Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder
,”
J. Comput. Phys.
134
,
306
315
(
1997
).
59.
M.
Braza
,
P.
Chassaing
, and
H. H.
Minh
, “
Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder
,”
J. Fluid Mech.
165
,
79
130
(
1986
).
60.
C.
Liu
,
X.
Zheng
, and
C. H.
Sung
, “
Preconditioned multigrid methods for unsteady incompressible flows
,”
J. Comput. Phys.
139
,
35
57
(
1998
).
You do not currently have access to this content.