A novel, two-way coupled, dusty-gas flow model has been developed in the direct simulation Monte Carlo (DSMC) framework and employed for the dust-dispersion study on lunar surface. In this model, the gas–gas collisions are modeled probabilistically, whereas, grain–grain interactions are computed deterministically. Most importantly, the gas–grain interactions are modeled in a two-way coupled manner through the consideration of momentum and energy exchange between the two phases. The proposed model is validated against the two-phase theoretical relations for a zero-dimensional simulation. The computational model is used to study the dust dispersion problem due to plume impingement on lunar surface. The influence of particle diameter and hovering altitudes on gas and grain phases, and dust transportation are analyzed in the modified DSMC framework. Furthermore, the sensitivity of the two-way coupled gas–grain interaction model is discussed in relation to the one-way coupled model.

1.
A. B.
Morris
, “
Simulation of rocket plume impingement and dust dispersal on the lunar surface
,” Ph.D. dissertation (
The University of Texas at Austin
,
2012
).
2.
E. M.
Christensen
,
S. A.
Batterson
,
H. E.
Benson
,
R.
Choate
,
R. E.
Hutton
,
L. D.
Jaffe
,
R. H.
Jones
,
H. Y.
Ko
,
F. N.
Schmidt
,
R. F.
Scott
, and
R. L.
Spencer
, “
Lunar surface mechanical properties
,”
J. Geophys. Res.
73
(
22
),
7169
7192
, (
1968
).
3.
G. H.
Heiken
,
T. V.
David
, and
M. F.
Bevan
,
Lunar Sourcebook, A User's Guide to the Moon
, Research supported by NASA (
Cambridge University Press
,
1991
).
4.
C. I.
Calle
,
C. R.
Buhler
,
J. L.
McFall
, and
S. J.
Snyder
, “
Particle removal by electrostatic and dielectrophoretic forces for dust control during lunar exploration missions
,”
J. Electrost.
67
(
2-3
),
89
92
(
2009
).
5.
J. R.
Gaier
,
K.
Journey
,
S.
Christopher
, and
S.
Davis
, “
Evaluation of brushing as a lunar dust mitigation strategy for thermal control surfaces
,”
Report No. NASA/TM-2011-217231
, NASA Glenn Research Center,
2011
.
6.
L. A.
Taylor
,
H. H.
Schmitt
,
W. D.
Carrier
, and
M.
Nakagawa
, “
The lunar dust problem: From liability to asset
,” in Proceedings of
1ˢᵗ Space Exploration Conference: Continuing the Voyage of Discovery
(
2005
), Paper No. AIAA 2005-2510.
7.
C.
Immer
,
P.
Metzger
,
P. E.
Hintze
,
A.
Nick
, and
R.
Horan
, “
Apollo 12 lunar module exhaust plume impingement on lunar surveyor III
,”
Icarus
211
(
2
),
1089
1102
(
2011
).
8.
L.
Roberts
, “
The action of a hypersonic jet on a dusty surface
,” in
Proceedings of 31st Annual Meeting of the Institute of Aerospace Science (
1963
), pp.
63
50
.
9.
L.
Roberts
, “
The interaction of a rocket exhaust with the lunar surface
,”
Fluid Dyn. Aspects Space Flight
2
,
269
290
(
1966
).
10.
A.
Tosh
,
P. A.
Liever
,
R. R.
Arslanbekov
, and
S. D.
Habchi
, “
Numerical analysis of spacecraft rocket plume impingement under lunar environment
,”
J. Spacecr. Rockets
48
(
1
),
93
102
(
2011
).
11.
J.
Marichalar
,
A.
Prisbell
,
F.
Lumpkin
, and
G.
LeBeau
, “
Study of plume impingement effects in the lunar lander environment
,”
AIP Conf. Proc.
1333
(
1
),
589
594
(
2011
).
12.
J.
Lane
,
P.
Metzger
,
C.
Immer
, and
X.
Li
, “
Lagrangian trajectory modeling of lunar dust particles
,” in Proceedings of
Earth and Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments
(
American Society of Civil Engineers
,
2008
), pp.
1
9
.
13.
C.
White
,
T. J.
Scanlon
,
J. A.
Merrifield
,
K.
Kontis
,
T.
Langener
, and
J.
Alves
, “
Numerical and experimental capabilities for studying rocket plume-regolith interactions
,”
AIP Conf. Proc.
1786
(
1
),
170003
(
2016
).
14.
A.
Sharma
,
D. K.
Agarwal
,
J. C.
Pisharady
, and
S. S.
Kumar
, “
Plume flow field analysis for lander propulsion system of Chandrayaan-2 mission
,” in
Proceedings of 68th International Astronautical Congress (IAC)
(
2017
), Vol.
11
.
15.
S. K.
Mishra
and
K. D.
Prasad
, “
Numerical evaluation of surface modifications at landing site due to spacecraft (soft) landing on the moon
,”
Planet. Space Sci.
156
,
57
61
(
2018
).
16.
M.
Gale
,
R. S.
Mehta
,
P.
Liever
,
J.
Curtis
, and
J.
Yang
, “
Realistic regolith models for plume-surface interaction in spacecraft propulsive landings
,” in
Proceedings of AIAA Scitech 2020 Forum
(
2020
), Paper No. AIAA 2020-0797.
17.
T. R.
Yeager
,
D. H.
Fontes
,
P.
Metzger
, and
M. P.
Kinzel
, “
Numerical model of jet impingement and particle trajectories in extraterrestrial landing events using an Euler-Lagrange method
,” in
Proceedings of AIAA Scitech 2020 Forum
(
2020
), Paper No. AIAA 2020-1808.
18.
A.
Rahimi
,
O.
Ejtehadi
,
K. H.
Lee
, and
R. S.
Myong
, “
Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing
,”
Acta Astronaut.
175
,
308
326
(
2020
).
19.
O.
Ejtehadi
and
R. S.
Myong
, “
A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework
,”
J. Comput. Phys.
411
,
109410
(
2020
).
20.
C.
Immer
,
J.
Lane
,
P.
Metzger
, and
S.
Clements
, “
Apollo video photogrammetry estimation of plume impingement effects
,”
Icarus
214
(
1
),
46
52
(
2011
).
21.
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
, “
An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method
,”
Phys. Fluids
13
(
11
),
3482
3492
(
2001
).
22.
S.
Gimelshein
,
A.
Alexeenko
,
D.
Wadsworth
, and
N.
Gimelshein
, “
The influence of particulates on thruster plume/shock layer interaction at high altitudes
,” in
Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit
(
2004
), Paper No. AIAA 2005-766.
23.
J. M.
Burt
, “
Monte carlo simulation of solid rocket exhaust plumes at high altitude
,” Ph.D. dissertation
(The University of Michigan
,
2006
).
24.
A. B.
Morris
,
D. B.
Goldstein
,
P. L.
Varghese
, and
L. M.
Trafton
, “
Approach for modeling rocket plume impingement and dust dispersal on the moon
,”
J. Spacecr. Rockets
52
(
2
),
362
374
(
2015
).
25.
A. K.
Chinnappan
and
R.
Kumar
, “
Modeling of high speed gas-granular flow over a 2D cylinder in the direct simulation Monte-Carlo framework
,”
Granular Matter
18
(
3
),
35
(
2016
).
26.
R.
Kumar
and
A. K.
Chinnappan
, “
Development of a multi-species, parallel, 3D direct simulation Monte-Carlo solver for rarefied gas flows
,”
Comput. Fluids
159
,
204
216
(
2017
).
27.
A. K.
Chinnappan
,
G.
Malaikannan
, and
R.
Kumar
, “
Insights into flow and heat transfer aspects of hypersonic rarefied flow over a blunt body with aerospike using direct simulation Monte-Carlo approach
,”
Aerosp. Sci. Technol.
66
,
119
128
(
2017
).
28.
G. A.
Bird
,
Molecular Gas Dynamics and Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
).
29.
P. S.
Prasanth
and
J. K.
Kakkassery
, “
Direct simulation Monte Carlo (DSMC): A numerical method for transition-regime flows - A review
,”
J. Indian Inst. Sci.
86
(
3
),
169
192
(
2006
).
30.
J. C.
Maxwell
, “
VII. On stresses in rarified gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
256
(
1879
).
31.
J. F.
Padilla
and
I. D.
Boyd
, “
Assessment of gas-surface interaction models for computation of rarefied hypersonic flow
,”
J. Thermophys. Heat Transfer
23
(
1
),
96
105
(
2009
).
32.
M.
Müller
and
H. J.
Herrmann
, “
DSMC – A stochastic algorithm for granular matter
,”
Phys. Dry Granular Media
350
,
413
420
(
1998
).
33.
G.
Gradenigo
,
A.
Sarracino
,
D.
Villamaina
, and
A.
Puglisi
, “
Fluctuating hydrodynamics and correlation lengths in a driven granular fluid
,”
J. Stat. Mech.: Theory Exp.
2011
(
8
),
P08017
.
34.
A. K.
Chinnappan
,
R.
Kumar
,
V. A.
Arghode
, and
R. S.
Myong
, “
Transport dynamics of an ellipsoidal particle in free molecular gas flow regime
,”
Phys. Fluids
31
(
3
),
037104
(
2019
).
35.
R.
Kumar
,
Z.
Li
,
A.
vanDuin
, and
D.
Levin
, “
Molecular dynamics studies to understand the mechanism of heat accommodation in homogeneous condensing flow of carbon dioxide
,”
J. Chem. Phys.
135
(
6
),
064503
(
2011
).
36.
P. A.
Chambre
and
S. A.
Schaaf
,
Flow of Rarefied Gases
(
Princeton University Press
,
2017
), Vol.
4971
.
37.
A. K.
Oppenheim
, “
Generalized theory of convective heat transfer in a free-molecule flow
,”
J. Aeronaut. Sci.
20
(
1
),
49
58
(
1953
).
38.
F. M.
Sauer
, “
Convective heat transfer from spheres in a free-molecule flow
,”
J. Aeronaut. Sci.
18
(
5
),
353
354
(
1951
).
39.
A. V.
Marayikkottu
,
S. S.
Sawant
,
D. A.
Levin
,
C.
Huang
,
M.
Schoenitz
, and
E. L.
Dreizin
, “
Study of particle lifting mechanisms in an electrostatic discharge plasma
,”
Int. J. Multiphase Flow
137
,
103564
(
2021
).
40.
F. E.
Marble
, “
Dynamics of dusty gases
,”
Annu. Rev. Fluid Mech.
2
(
1
),
397
446
(
1970
).
41.
C.
Humphries
,
W.
Hammock
,
E.
Currie
,
R.
Taylor
, and
A.
Fisher
, “
Apollo experience report: Descent propulsion system
,”
Report No. NASA-TN-D-7143
, Manned Spacecraft Center,
Houston, TX
,
1973
.
42.
P. T.
Metzger
,
J.
Smith
, and
J. E.
Lane
, “
Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site
,”
J. Geophys. Res.
116
(
E6
),
1
22
, (
2011
).
43.
P.
Metzger
,
J.
Lane
,
C.
Immer
,
J.
Gamsky
,
W.
Hauslein
,
X.
Li
,
R.
Latta
 III
, and
C.
Donahue
, “
Scaling of erosion rate in subsonic jet experiments and Apollo lunar module landings
,” in Proceeding of
Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments
(
American Society of Civil Engineers
, Reston, VA,
2010
), pp.
191
207
.
44.
P. T.
Metzger
,
R. C.
Latta
 III
,
J. M.
Schuler
, and
C. D.
Immer
, “
Craters formed in granular beds by impinging jets of gas
,”
AIP Conf. Proc.
1145
(
1
),
767
770
(
2009
).
45.
D.
Lachouette
,
F.
Golay
, and
S.
Bonelli
, “
One-dimensional modeling of piping flow erosion
,”
C. R. Méc.
336
(
9
),
731
736
(
2008
).
46.
J. E.
Lane
and
P. T.
Metzger
, “
Estimation of Apollo lunar dust transport using optical extinction measurements
,”
Acta Geophys.
63
(
2
),
568
599
(
2015
).
You do not currently have access to this content.