The simulative prediction of fiber orientation for injection-molded short fiber-reinforced thermoplastics is an important step in prediction warpage and failure of injection molded parts. There exists a variety of phenomenological macroscopic fiber orientation models, which are computationally very efficient but strongly dependent on phenomenological parameters. This research focuses on a mechanistic fiber orientation model for concentrated short fiber-reinforced thermoplastics. A fully coupled computational fluid dynamics particle simulation is used to estimate the lubrication forces between two fibers in different configurations (angles between fibers, velocities) with varying fiber length and surrounding fluid viscosity. Based on these data, a calibrated lubrication model is developed and implemented in a mechanistic fiber orientation simulation. In addition, the fiber orientation estimated by the enhanced mechanistic fiber model is compared to experimental fiber orientation data obtained with a glass fiber-reinforced thermoplastic industrial grade, which showed an improvement over a simulation that did not include the lubrication force.

1.
U.
Gandhi
,
S.
Goris
,
T. A.
Osswald
, and
Y.-Y.
Song
,
Discontinuous Fiber-Reinforced Composites
(
Hanser
,
2020
).
2.
G. B.
Jeffrey
, “
The motion of ellipsoidal particles immersed in a viscous
,”
Proc. Math. Phys. Eng. Sci.
102
(
172)
,
161
179
(
1922
).
3.
F.
Folgar
and
C. L.
Tucker
, “
Orientation behavior of fibers in concentrated suspensions
,”
J. Reinf. Plast. Compos.
3
,
98
119
(
1984
).
4.
S. G.
Advani
and
C. L.
Tucker
, “
the use of tensors to describe and predict fiber orientation in short fiber composites
,”
J. Rheol.
31
,
751
784
(
1987
).
5.
H. M.
Huynh
, “
Improved fiber orientation prediction for injection-molded composites
,” Master the
sis
(
University of Illinois Urbana-Champaign
,
2001
).
6.
J.
Wang
,
J. F.
O'Gara
, and
C. L.
Tucker
, “
An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence
,”
J. Rheol.
52
,
1179
1200
(
2008
).
7.
H.-C.
Tseng
,
R.-Y.
Chang
, and
C.-H.
Hsu
, “
Phenomenological improvements to predictive models of fiber orientation in concentrated suspensions
,”
J. Rheol.
57
,
1597
1631
(
2013
).
8.
J. H.
Phelps
and
C. L.
Tucker
, “
An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics
,”
J. Non-Newtonian Fluid Mech.
156
,
165
176
(
2009
).
9.
H.-C.
Tseng
,
R.-Y.
Chang
, and
C.-H.
Hsu
, “
The use of principal spatial tensor to predict anisotropic fiber orientation in concentrated fiber suspensions
,”
J. Rheol.
62
(
1
),
313
320
(
2018
).
10.
A.
Bakharev
,
H.
Yu
,
R.
Speight
, and
J.
Wang
,
Using New Anisotropic Rotational Diffusion Model to Improve Prediction of Short Fibers in Thermoplastic Injection Molding
(
Antec
,
Orlando
,
2018
).
11.
A.
Latz
,
U.
Strautins
, and
D.
Niedziela
, “
Comparative numerical study of two concentrated fiber suspension models
,”
J. Non-Newtonian Fluid Mech.
165
,
764
781
(
2010
).
12.
H.
Chen
,
P.
Wapperom
, and
D. G.
Baird
, “
The use of flow type dependent strain reduction factor to improve fiber orientation predictions for an injection molded center-gated disk
,”
Phys. Fluids
31
(
12
),
123105
(
2019
).
13.
S. K.
Kugler
,
A. P.
Dey
,
S.
Saad
,
C.
Cruz
,
A.
Kech
, and
T.
Osswald
, “
A flow-dependent fiber orientation model
,”
J. Compos. Sci.
4
,
96
(
2020
).
14.
M.
Djalili-Moghaddam
and
S.
Toll
, “
A model for short-range interactions in fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
132
,
73
85
(
2005
).
15.
J.
Férec
,
G.
Ausias
,
M.
Heuzey
, and
P.
Carreau
, “
Modeling fiber interactions in semiconcentrated
,”
J. Rheol.
53
,
49
72
(
2009
).
16.
J.
Férec
,
E.
Abisset-Chavanne
,
G.
Ausias
, and
F.
Chinesta
, “
On the use of interaction tensors to describe and predict rod interactions in rod suspensions
,”
Rheol. Acta
53
,
445
456
(
2014
).
17.
L.
He
,
L.
Gang
,
D.
Chen
,
W.
Li
, and
C.
Lu
, “
Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites
,”
Modell. Simul. Mater. Sci. Eng.
25
(
5
),
055007
(
2017
).
18.
E.
Bertevas
,
J.
Férec
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process
,”
Phys. Fluids
30
(
10
),
103103
(
2018
).
19.
Z.
Ouyang
,
E.
Bertevas
,
L.
Parc
,
B. C.
Khoo
,
N.
Phan-Thien
,
J.
Férec
, and
G.
Ausias
, “
A smoothed particle hydrodynamics simulation of fiber-filled composites in a non-isothermal three-dimensional printing process
,”
Phys. Fluids
31
(
12
),
123102
(
2019
).
20.
S.
Yashiro
,
H.
Sasaki
, and
Y.
Sakaida
, “
Particle simulation for predicting fiber motion in injection molding of short-fiber-reinforced composites
,”
Compos. Appl. Sci. Manuf.
43
(
10
),
1754
1764
(
2012
).
21.
S.
Yashiro
,
T.
Okabe
, and
K.
Matsushima
, “
A numerical approach for injection molding of short-fiber-reinforced plastics using a particle method
,”
Adv. Compos. Mater.
20
(
6
),
503
517
(
2011
).
22.
C.
Pérez
, “
The use of a fiber simulation to predict fiber motion in polymer processing
,” Ph.D. thesis (University of Wisconsin Madison,
2016
).
23.
R.
Mezher
,
M.
Perez
,
A.
Scheuer
,
E.
Abisset-Chavanne
,
F.
Chinesta
, and
R.
Keunings
, “
Analysis of the Folgar & Tucker model for concentrated fibre suspensions in unconfined and confined shear flows via direct numerical simulation
,”
Compos., Part A
91
,
388
397
(
2016
).
24.
T.
Sasayama
and
M.
Inagaki
, “
Efficient bead-chain model for predicting fiber motion during molding of fiber-reinforced thermoplastics
,”
J. Non-Newtonian Fluid Mech.
264
,
135
143
(
2019
).
25.
G.
Ausias
,
X. J.
Fan
, and
R. I.
Tanner
, “
Direct simulation for concentrated fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
135
,
46
57
(
2006
).
26.
R.
Mezher
,
E.
Abisset-Chavanne
,
J.
Férec
,
G.
Ausias
, and
F.
Chinesta
, “
Direct simulation of concentrated fiber suspensions subjected to bending effects
,”
Model. Simul. Mater. Sci. Eng.
23
,
055007
(
2015
).
27.
J.
Wang
,
P.
Cook
,
A.
Bakharev
,
F.
Costa
, and
D.
Astbury
, “
Prediction of fiber orientation in injection-molded parts using three-dimensional simulations
,”
AIP Conf. Proc.
1713
,
040007
(
2016
).
28.
T.
Sasayama
and
M.
Inagaki
, “
Simplified bead-chain model for direct fiber simulation in viscous flow
,”
J. Non-Newtonian Fluid Mech.
250
,
52
58
(
2017
).
29.
C.
Kuhn
,
I.
Walter
,
O.
Taeger
, and
T.
Osswald
, “
Experimental and numerical analysis of fiber matrix
,”
J. Compos. Sci.
1
,
2
(
2017
).
30.
G.
Meirson
and
A. N.
Hrymak
, “
Two dimensional long-flexible fiber orientation simulation in squeeze flow
,”
Polym. Compos.
39
,
4656
4665
(
2018
).
31.
T.
Sasayama
,
M.
Inagaki
, and
N.
Sato
, “
Direct simulation of glass fiber breakage in simple shear flow considering fiber-fiber interaction
,”
Compos., Part A
124
,
105514
(
2019
).
32.
T.
Laurencin
,
P.
Laune
,
L.
Orgéas
,
P.
Dumont
,
L.
Silva
, and
S.
Rolland du Roscoat
, “
Fibre kinematics in dilute non-Newtonian fibre suspensions during confined and lubricated squeeze flow: Direct numerical simulation and analytical modelling
,”
J. Non-Newtonian Fluid Mech.
273
,
104187
(
2019
).
33.
J.
Andric
,
S.
Lindströn
,
S.
Sasic
, and
H.
Nilsson
, “
Rheological properties of dilute suspensions of rigid and flexible fibers
,”
J. Non-Newtonian Fluid Mech.
212
,
36
42
(
2014
).
34.
J.
Kromkamp
,
D. T.
Van der Ende
,
D.
Kandhai
,
R. G.
Van der Sman
, and
R. M.
Boom
, “
Shear-induced self-diffusion and microstructure in non-Brownian suspensions at non-zero Reynolds numbers
,”
J. Fluid Mech.
529
,
253
278
(
2005
).
35.
S.
Lindström
and
T.
Uesaka
, “
Simulation of the motion of flexible fibers in viscous fluid flow
,”
Phys. Fluids
19
(
11
),
113307
(
2007
).
36.
S.
Kugler
,
A.
Kech
,
C.
Cruz
, and
T.
Osswald
, “
Fiber orientation predictions—a review of existing models
,”
J. Compos. Sci.
4
(
2
),
69
(
2020
).
37.
P.
Skjetne
,
R. F.
Ross
, and
D. J.
Klingenberg
, “
Simulation of single fiber dynamics
,”
J. Chem. Phys.
107
(
6
),
2108
2121
(
1997
).
38.
Y.
Yamane
,
Y.
Kaneda
, and
M.
Dio
, “
Numerical simulation of semi-dilute suspensions of rodlike particles in shear flow
,”
J. Non-Newtonian Fluid Mech.
54
,
405
421
(
1994
).
39.
R. R.
Sundararajakumar
and
D. R.
Koch
, “
Structure and properties of sheared fiber suspensions with mechanical contacts
,”
J. Non-Newtonian Fluid Mech.
73
(
3
),
205
239
(
1997
).
40.
O. G.
Harlen
,
R. R.
Sundararajakumar
, and
D. L.
Koch
, “
Numerical simulations of a sphere settling through a suspension of neutrally buoyant fibres
,”
J. Fluid Mech.
388
,
355
388
(
1999
).
41.
M.
Yamanoi
and
J. M.
Maia
, “
Analysis of rheological properties of fibre suspensions in a Newtonian fluid by direct fibre simulation. Part 1: Rigid fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
165
(
19-20
),
1055
1063
(
2010
).
42.
F.
Chollet
 et al, https://keras.io for Keras (
2015
).
43.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
44.
T.
Oliphant
,
NumPy: A Guide to NumPy
(
Trelgol Publishing
,
USA
,
2006
).
45.
S. K.
Kugler
,
G.
Lambert
,
C.
Cruz
,
A.
Kech
,
T.
Osswald
, and
D.
Baird
, “
Macroscopic fiber orientation model evaluation for concentrated short fiber reinforced polymers in comparison to experimental data
,”
Polym. Compos.
41
(
7
),
2542
2556
(
2020
).
46.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
ICLR 2015
, San Diego (
2015
).
You do not currently have access to this content.