We study the dynamics of a spherical colloidal particle pulled along the fluid–fluid interface using lattice Boltzmann (LB) simulations. We consider an interface with a finite width and include both the effects of the thermodynamics of the interface and the particle wetting, characterized by the contact angle θ between the particle surface and the interface, in addition to the viscosity ratio λ between the two fluids. We characterize the particle dynamics by applying a constant pulling force along the interface and measure both the translational and the rotational dynamics as a function of the contact angle and the viscosity ratio. We observe that the hydrodynamic drag is reduced and the particle rotation is increased when the particle resides more in the low viscosity fluid, in agreement with previous hydrodynamic theories. We also study the case where the particle rotation is suppressed, and find an overall increase of the drag coefficient.

1.
A. D.
Dinsmore
,
M. F.
Hsu
,
M. G.
Nikolaides
,
M.
Marquez
,
A. R.
Bausch
, and
D. A.
Weitz
, “
Colloidosomes: Selectively permeable capsules composed of colloidal particles
,”
Science
298
,
1006
1009
(
2002
).
2.
R.
Aveyard
,
B. P.
Binks
, and
J. H.
Clint
, “
Emulsions stabilised solely by colloidal particles
,”
Adv. Colloid Interface Sci.
100-102
,
503
546
(
2003
).
3.
P. S.
Clegg
,
E. M.
Herzig
,
A. B.
Schofield
,
T. S.
Horozov
,
B. P.
Binks
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Colloid-stabilized emulsions: Behaviour as the interfacial tension is reduced
,”
J. Phys.: Condens. Matter
17
,
S3433
3438
(
2005
).
4.
T. S.
Horozov
, “
Foams and foam films stabilised by solid particles
,”
Curr. Opin. Colloid Interface Sci.
13
,
134
140
(
2008
).
5.
S.
Lam
,
K. P.
Velikov
, and
O. D.
Velev
, “
Pickering stabilization of foams and emulsions with particles of biological origin
,”
Curr. Opin. Colloid Interface Sci.
19
,
490
500
(
2014
).
6.
M. E.
Cates
and
P. S.
Clegg
, “
Bijels: A new class of soft materials
,”
Soft Matter
4
,
2132
2138
(
2008
).
7.
K.
Stratford
,
R.
Adhikari
,
I.
Pagonabarraga
,
J.-C.
Desplat
, and
M. E.
Cates
, “
Colloidal jamming at interfaces: A route to fluid-bicontinuous gels
,”
Science
309
,
2198
2201
(
2005
).
8.
S.
Aland
,
J.
Lowengrub
, and
A.
Voigt
, “
A continuum model of colloid-stabilized interfaces
,”
Phys. Fluids
23
,
062103
(
2011
).
9.
R.
Arabjamaloei
,
R. S.
Shah
,
S.
Bryant
, and
M.
Trifkovic
, “
Controlling structure of materials derived from spinodally decomposing liquids
,”
Phys. Fluids
33
,
032020
(
2021
).
10.
P. S.
Bhosale
,
M. V.
Panchagnula
, and
H. A.
Stretz
, “
Mechanically robust nanoparticle stabilized transparent liquid marbles
,”
Appl. Phys. Lett.
93
,
034109
(
2008
).
11.
N.
Janardan
,
M. V.
Panchagnula
, and
E.
Bormashenko
, “
Liquid marbles: Physics and applications
,”
Sadhana
40
,
653
671
(
2015
).
12.
W.
Ramsden
, “
Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation
,”
Proc. R. Soc. London
72
,
156
164
(
1903
).
13.
S. U.
Pickering
, “
Cxcvi.—emulsions
,”
J. Chem. Soc., Trans.
91
,
2001
2021
(
1907
).
14.
B.
Radoev
,
M.
Nedyalkov
, and
V.
Dyakovich
, “
Brownian motion at liquid-gas interfaces. 1. diffusion coefficients of macroparticles at pure interfaces
,”
Langmuir
8
,
2962
2965
(
1992
).
15.
J. T.
Petkov
,
N. D.
Denkov
,
K. D.
Danov
,
O. D.
Velev
,
R.
Aust
, and
F.
Durst
, “
Measurement of the drag coefficient of spherical particles attached to fluid interfaces
,”
J. Colloid Interface Sci.
172
,
147
154
(
1995
).
16.
R. B.
Walder
,
A.
Honciuc
, and
D. K.
Schwartz
, “
Phospholipid diffusion at the oilwater interface
,”
J. Phys. Chem. B
114
,
11484
11488
(
2010
).
17.
D.
Wang
,
S.
Yordanov
,
H. M.
Paroor
,
A.
Mukhopadhyay
,
C. Y.
Li
,
H. J.
Butt
, and
K.
Koynov
, “
Probing diffusion of single nanoparticles at water–oil interfaces
,”
Small
7
,
3502
3507
(
2011
).
18.
I.
Sriram
,
R.
Walder
, and
D. K.
Schwartz
, “
Stokes–einstein and desorption-mediated diffusion of protein molecules at the oil–water interface
,”
Soft Matter
8
,
6000
(
2012
).
19.
K.
Danov
,
R.
Aust
,
F.
Durst
, and
U.
Lange
, “
Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large brownian particle
,”
J. Colloid Interface Sci.
175
,
36
45
(
1995
).
20.
C.
Pozrikidis
, “
Particle motion near and inside an interface
,”
J. Fluid Mech.
575
,
333
357
(
2007
).
21.
A.
Dörr
,
S.
Hardt
,
H.
Masoud
, and
H. A.
Stone
, “
Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface
,”
J. Fluid Mech.
790
,
607
618
(
2016
).
22.
S.
Das
,
J.
Koplik
,
R.
Farinato
,
D. R.
Nagaraj
,
C.
Maldarelli
, and
P.
Somasundaran
, “
The translational and rotational dynamics of a colloid moving along the air-liquid interface of a thin film
,”
Sci. Rep.
8
,
8910
(
2018
).
23.
J. C.
Loudet
,
M.
Qiu
,
J.
Hemauer
, and
J. J.
Feng
, “
Drag force on a particle straddling a fluid interface: Influence of interfacial deformations
,”
Eur. Phys. J. E
43
,
1
13
(
2020
).
24.
G.
Lecrivain
,
R.
Yamamoto
,
U.
Hampel
, and
T.
Taniguchi
, “
Direct numerical simulation of a particle attachment to an immersed bubble
,”
Phys. Fluids
28
,
083301
(
2016
).
25.
A.
Gaddam
,
A.
Agrawal
,
S. S.
Joshi
, and
M. C.
Thompson
, “
Slippage on a particle-laden liquid-gas interface in textured microchannels
,”
Phys. Fluids
30
,
032101
(
2018
).
26.
V. M.
Kendon
,
M. E.
Cates
,
I.
Pagonabarraga
, and
J.
Desplat
, “
Inertial effects in three dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study
,”
J. Fluid Mech.
440
,
147
203
(
2001
).
27.
J.-C.
Desplat
,
I.
Pagonabarraga
, and
P.
Bladon
, “
Ludwig: A parallel lattice-Boltzmann code for complex fluids
,”
Comput. Phys. Commun.
134
,
273
290
(
2001
).
28.
See https://github.com/ludwig-cf/ludwig for “
Ludwig: V 0.11.0
(
2020
).”
29.
A. J. C.
Ladd
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. Theoretical foundation
,”
J. Fluid Mech.
271
,
285
(
1994
).
30.
A. J. C.
Ladd
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. Numerical results
,”
J. Fluid Mech.
271
,
311
(
1994
).
31.
K.
Langaas
and
J.
Yeomans
, “
Lattice Boltzmann simulation of a binary fluid with different phase viscosities and its application to fingering in two dimensions
,”
Eur. Phys. J. B
15
,
133
141
(
2000
).
32.
H.
Hasimoto
, “
On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
,”
J. Fluid Mech.
5
,
317
328
(
1959
).
33.
T. M.
Fischer
,
P.
Dhar
, and
P.
Heinig
, “
The viscous drag of spheres and filaments moving in membranes or monolayers
,”
J. Fluid Mech.
558
,
451
475
(
2006
).
34.
H.
Brenner
, “
The stokes resistance of a slightly deformed sphere
,”
Chem. Eng. Sci.
19
,
519
539
(
1964
).
35.
A.
Dörr
and
S.
Hardt
, “
Driven particles at fluid interfaces acting as capillary dipoles
,”
J. Fluid Mech.
770
,
5
26
(
2015
).
You do not currently have access to this content.