Hyperthermal atomic oxygen (AO) bombardment to thermal protection system surface has been identified to impact the aerodynamic heating significantly, due to complex chemical reactions at the gas–solid interface, e.g., surface catalysis recombination, oxidation, and ablation. Previous investigations have focused on the surface effects of the AO collision process, while the influence of impacting gas characteristics remains unclear under various non-equilibrium aerodynamic conditions. This work conducts a reactive molecular dynamics (RMD) study of AO collisions over graphene surface, by considering the incoming gas at different translational energies (0.1 ≤ Ek ≤ 10 eV), incident angles (θ = 15°, 30°, 45°, 60°, 75°, and 90°), and O/O2 ratios (χO2 = 0.00, 0.25, 0.50, 0.75, and 1.00). The RMD results indicate that for AO normal incidence, the predominant reactive products of O2, CO, and CO2 molecules are produced due to the synergistic catalytic recombination and surface ablation reaction effects. A maximum recombination performance is identified around 5-eV AO incidence. For off-normal AO incidence, the recombination coefficient increases with the increase in incidence angle from 15° to 60° due to the larger perpendicular components of translational energy and then decreases smoothly. With the increase in O2 mole fraction, the surface reflection probabilities increase, which result in the decrease in both catalytic recombination and ablation activities. Via revealing the atomistic-scale mechanism of gas effects on the surface under hypersonic non-equilibrium conditions, this work sheds light for the future design and optimization of thermal protection materials.

1.
Z.
Hu
,
S.
Meng
,
F.
Yi
,
J.
Li
, and
C.
Xu
, “
Oxyacetylene ablation resistance of continuous gradient ceramic–polymer composite
,”
Corros. Sci.
179
,
109050
(
2021
).
2.
R.
Ding
,
J.
Wang
,
F.
He
,
M.
Wang
,
Y.
Luan
,
G.
Dong
, and
L.
Tang
, “
Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge
,”
Appl. Therm. Eng.
169
,
114949
(
2020
).
3.
W.
Li
,
G.
Fang
,
W.
Li
,
J.
Liang
, and
S.
Meng
, “
Numerical investigation of mesoscopic volumetric ablation of 3D braided charring composites
,”
Appl. Therm. Eng.
181
,
116016
(
2020
).
4.
Z.
Yuan
,
S.
Huang
,
X.
Gao
, and
J.
Liu
, “
Effects of surface-catalysis efficiency on aeroheating characteristics in hypersonic flow
,”
J. Aerosp. Eng.
30
(
3
),
04016086
(
2017
).
5.
I.
Kim
,
Y.
Yang
, and
G.
Park
, “
Effect of titanium surface roughness on oxygen catalytic recombination in a shock tube
,”
Acta Astronaut.
166
,
260
(
2020
).
6.
G.
Colonna
,
F.
Bonelli
, and
G.
Pascazio
, “
Impact of fundamental molecular kinetics on macroscopic properties of high-enthalpy flows: The case of hypersonic atmospheric entry
,”
Phys. Rev. Fluids
4
(
3
),
033404
(
2019
).
7.
G. V.
Candler
, “
Rate effects in hypersonic flows
,”
Annu. Rev. Fluid Mech.
51
,
379
(
2019
).
8.
K.
Swaminathan-Gopalan
,
A.
Borner
,
V. J.
Murray
,
S.
Poovathingal
,
T. K.
Minton
,
N. N.
Mansour
, and
K. A.
Stephani
, “
Development and validation of a finite-rate model for carbon oxidation by atomic oxygen
,”
Carbon
137
,
313
(
2018
).
9.
G.
Ceglia
,
A.
Del Vecchio
,
U.
Koch
,
B.
Esser
, and
A.
Gülhan
, “
Two-photon laser-induced fluorescence measurements of atomic oxygen density in hypersonic plasma flow
,”
J. Thermophys. Heat Transfer
33
(
2
),
292
(
2019
).
10.
N. K.
Gopinath
,
G.
Jagadeesh
, and
B.
Basu
, “
Shock wave‐material interaction in ZrB2–SiC based ultra-high temperature ceramics for hypersonic applications
,”
J. Am. Ceram. Soc.
102
(
11
),
6925
(
2019
).
11.
J. H.
Chae
,
T. K.
Mankodi
,
S. M.
Choi
, and
R. S.
Myong
, “
Combined effects of thermal non-equilibrium and chemical reactions on hypersonic air flows around an orbital reentry vehicle
,”
Int. J. Aeronaut. Space Sci.
21
,
612
615
(
2020
).
12.
G. J.
Kroes
,
M.
Pavanello
,
M.
Blanco-Rey
,
M.
Alducin
, and
D. J.
Auerbach
, “
Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu (111) and Au (111)
,”
J. Chem. Phys.
141
(
5
),
054705
(
2014
).
13.
I.
Kim
and
G.
Park
, “
Experimental study of oxygen catalytic recombination on a smooth surface in a shock tube
,”
Appl. Therm. Eng.
156
,
678
(
2019
).
14.
W.
Zhu
,
H.
Gong
,
Y.
Han
,
M.
Zhang
, and
A. C. T.
van Duin
, “
Development of a reactive force field for simulations on the catalytic conversion of C/H/O molecules on Cu-metal and Cu-oxide surfaces and application to Cu/CuO-based chemical looping
,”
J. Phys. Chem. C
124
(
23
),
12512
(
2020
).
15.
L.
Krumbein
,
K.
Anggara
,
M.
Stella
,
T.
Michnowicz
,
H.
Ochner
,
S.
Abb
, and
S.
Rauschenbach
, “
Fast molecular compression by a hyperthermal collision gives bond-selective mechanochemistry
,”
Phys. Rev. Lett.
126
(
5
),
056001
(
2021
).
16.
J. W.
Streicher
,
A.
Krish
, and
R. K.
Hanson
, “
Vibrational relaxation time measurements in shock-heated oxygen and air from 2000 K to 9000 K using ultraviolet laser absorption
,”
Phys. Fluids
32
(
8
),
086101
(
2020
).
17.
I. C.
Gerber
and
P.
Serp
, “
A theory/experience description of support effects in carbon-supported catalysts
,”
Chem. Rev.
120
(
2
),
1250
(
2020
).
18.
K. D.
Gibson
,
S. J.
Sibener
,
H. P.
Upadhaya
,
A. L.
Brunsvold
,
J.
Zhang
,
T. K.
Minton
, and
D.
Troya
, “
Hyperthermal Ar atom scattering from C(0001) surface
,”
J. Chem. Phys.
128
,
224708
(
2008
).
19.
K. S.
Prata
,
T. K.
Minton
, and
T. E.
Schwartzentruber
, “
Air-carbon ablation model for hypersonic flight from molecular beam data
,”
AIAA Scitech Forum
2021
,
0925
(
2021
).
20.
X.
Zhou
,
Y.
Zhang
,
H.
Guo
, and
B.
Jiang
, “
Towards bridging the structure gap in heterogeneous catalysis: The impact of defects in dissociative chemisorption of methane on Ir surfaces
,”
Phys. Chem. Chem. Phys.
23
(
7
),
4376
(
2021
).
21.
V. J.
Murray
and
T. K.
Minton
, “
Gas-surface interactions of atomic nitrogen with vitreous carbon
,”
Carbon
150
,
85
(
2019
).
22.
V. J.
Murray
,
P.
Recio
,
A.
Caracciolo
,
C.
Miossec
,
N.
Balucani
,
P.
Casavecchia
, and
T. K.
Minton
, “
Oxidation and nitridation of vitreous carbon at high temperatures
,”
Carbon
167
,
388
(
2020
).
23.
O.
Galparsoro
,
H. F.
Busnengo
,
A. E.
Martinez
,
J. I.
Juaristi
,
M.
Alducin
, and
P.
Larregaray
, “
Energy dissipation to tungsten surfaces upon hot-atom and Eley–Rideal recombination of H2
,”
Phys. Chem. Chem. Phys.
20
(
33
),
21334
(
2018
).
24.
N.
Andric
and
P.
Jenny
, “
Molecular dynamics investigation of energy transfer during gas-surface collisions
,”
Phys. Fluids
30
(
7
),
077104
(
2018
).
25.
S.
Yuan
,
H.
Zhang
, and
S.
Yuan
, “
Atomistic insights into resistance to oxidation of Si (111) grafted different organic chains
,”
Comput. Mater. Sci.
191
,
110336
(
2021
).
26.
J.
Zhao
,
G.
Yao
, and
D.
Wen
, “
Salinity-dependent alterations of static and dynamic contact angles in oil/brine/calcite systems: A molecular dynamics simulation study
,”
Fuel
272
,
117615
(
2020
).
27.
J.
Zhao
,
G.
Yao
,
S. B.
Ramisetti
,
R. B.
Hammond
, and
D.
Wen
, “
Molecular dynamics investigation of substrate wettability alteration and oil transport in a calcite nanopore
,”
Fuel
239
,
1149
(
2019
).
28.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
(
2001
).
29.
K.
Chenoweth
,
A. C. T.
van Duin
, and
W. A.
Goddard
, “
ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
,”
J. Phys. Chem. A
112
,
1040
(
2008
).
30.
S. G.
Srinivasan
and
A. C. T.
van Duin
, “
Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field
,”
J. Phys. Chem. A
115
(
46
),
13269
(
2011
).
31.
S.
Poovathingal
,
T. E.
Schwartzentruber
,
S. G.
Srinivasan
, and
A. C. T.
van Duin
, “
Large scale computational chemistry modeling of the oxidation of highly oriented pyrolytic graphite
,”
J. Phys. Chem. A
117
(
13
),
2692
(
2013
).
32.
A.
Rahnamoun
and
A. C. T.
van Duin
, “
Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method
,”
J. Phys. Chem. A
118
(
15
),
2780
(
2014
).
33.
S. G.
Srinivasan
,
A. C. T.
van Duin
, and
P.
Ganesh
, “
Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene
,”
J. Phys. Chem. A
119
(
4
),
571
(
2015
).
34.
S. G.
Srinivasan
and
A. C. T.
van Duin
, “
Direction dependent etching of diamond surfaces by hyperthermal atomic oxygen: A ReaxFF based molecular dynamics study
,”
Carbon
82
,
314
(
2015
).
35.
D.
Hou
,
Z.
Lu
,
X.
Li
,
H.
Ma
, and
Z.
Li
, “
Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms
,”
Carbon
115
,
188
(
2017
).
36.
G.
Füchsel
,
X.
Zhou
,
B.
Jiang
,
J. I.
Juaristi
,
M.
Alducin
,
H.
Guo
, and
G. J.
Kroes
, “
Reactive and nonreactive scattering of HCl from Au (111): An ab initio molecular dynamics study
,”
J. Phys. Chem. C
123
(
4
),
2287
(
2019
).
37.
X.
Zhou
,
L.
Zhang
, and
B.
Jiang
, “
Hot-atom-mediated dynamical displacement of CO adsorbed on Cu (111) by incident H atoms: An ab initio molecular dynamics study
,”
J. Phys. Chem. C
122
(
27
),
15485
(
2018
).
38.
X. Z.
Jiang
,
M.
Feng
,
W.
Zeng
, and
K. H.
Luo
, “
Study of mechanisms for electric field effects on ethanol oxidation via reactive force field molecular dynamics
,”
Proc. Combust. Inst.
37
(
4
),
5525
(
2019
).
39.
C.
Jian
,
J. J.
Adams
,
J. C.
Grossman
, and
N.
Ferralis
, “
Carbon fiber synthesis from pitch: Insights from ReaxFF based molecular dynamics simulations
,”
Carbon
176
,
569
(
2021
).
40.
C.
Ashraf
,
A.
Vashisth
,
C. E.
Bakis
, and
A. C. T.
van Duin
, “
Reactive molecular dynamics simulations of the atomic oxygen impact on epoxies with different chemistries
,”
J. Phys. Chem. C
123
(
24
),
15145
(
2019
).
41.
T.
Park
,
C.
Park
,
J.
Jung
, and
G. J.
Yun
, “
Investigation of silicon carbide oxidation mechanism using ReaxFF molecular dynamics simulation
,”
J. Spacecr. Rockets
57
(
6
),
1328
(
2020
).
42.
I.
Kim
,
S.
Lee
,
J. G.
Kim
, and
G.
Park
, “
Analysis of nitrogen recombination activity on silicon dioxide with stagnation heat-transfer
,”
Acta Astronaut.
177
,
386
(
2020
).
43.
Z.
Cui
,
J.
Zhao
,
L.
He
,
H.
Jin
,
J.
Zhang
, and
D.
Wen
, “
A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets
,”
Phys. Fluids
32
(
11
),
112110
(
2020
).
44.
M.
Majumder
,
K. D.
Gibson
,
S. J.
Sibener
, and
W. L.
Hase
, “
Chemical dynamics simulations and scattering experiments for O2 collisions with graphite
,”
J. Phys. Chem. C
122
,
16048
(
2018
).
45.
X.
Li
,
A.
Wang
, and
K. R.
Lee
, “
Transformation of amorphous carbon to graphene on low-index Ni surfaces during rapid thermal processing: A reactive molecular dynamics study
,”
Phys. Chem. Chem. Phys.
21
,
2271
(
2019
).
46.
M.
Majumder
,
H. N.
Bhandari
,
S.
Pratihar
, and
W. L.
Hase
, “
Chemical dynamics simulation of low energy N2 collisions with graphite
,”
J. Phys. Chem. C
122
,
612
(
2018
).
47.
N. A.
Mehta
,
V. J.
Murray
,
C.
Xu
,
D. A.
Levin
, and
T. K.
Minton
, “
Nonreactive scattering of N2 from layered graphene using molecular beam experiments and molecular dynamics
,”
J. Phys. Chem. C
122
,
9859
(
2018
).
48.
S.
Plimpton
,
P.
Crozier
, and
A.
Thompson
,
LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator
(
Sandia National Laboratories
,
2007
), Vol.
18
, p.
43
.
49.
R.
Goulard
, “
On catalytic recombination rates in hypersonic stagnation heat transfer
,”
J. Jet Propul.
28
(
11
),
737
(
1958
).
50.
N. A.
Vinogradov
,
K.
Schulte
,
M. L.
Ng
,
A.
Mikkelsen
,
E.
Lundgren
,
N.
Martensson
, and
A.
Preobrajenski
, “
Impact of atomic oxygen on the structure of graphene formed on Ir (111) and Pt (111)
,”
J. Phys. Chem. C
115
,
9568
(
2011
).
51.
V.
Singh
,
D.
Joung
,
L.
Zhai
,
S.
Das
,
S. I.
Khondaker
, and
S.
Seal
, “
Graphene based materials: Past, present and future
,”
Prog. Mater. Sci.
56
,
1178
(
2011
).
52.
P.
Norman
and
T.
Schwartzentruber
, “
A finite-rate model for oxygen-silica catalysis through computational chemistry simulation
,”
AIP Conf. Proc.
1501
,
1137
(
2012
).
You do not currently have access to this content.