The classical Plateau problem of finding minimal surfaces supported by two noncircular coaxial rings is studied theoretically and experimentally. Using a fluid dynamics analogy, we generalize the classical catenoid solution for a film on circular rings to the general cases of noncircular rings. Some examples of analytical solutions for elliptical, polygonal, and ovoidal rings are presented. The shapes of a tubular film and a film separated by a lamella at the wrist are obtained in an analytical form. The stability of these films is analyzed and compared with the classical catenoid. The data on critical parameters of all minimal surfaces are collected in the tables that can be used in practical applications. The theory is experimentally validated using soap films on elliptical identical frames. Moreover, the shapes of soap films on two different elliptical frames demonstrate a new feature: a flat separating lamella lying parallel to the rings was never observed in experiments. All lamellae appeared deformed suggesting the existence of a new family of minimal surfaces which does not exist in the case of frames of the same sizes.

1.
J.
Plateau
, “
Experimental and theoretical researches on the figures on equilibrium of a liquid mass withdrawn from the action of gravity
,” in
Annual Report of the Board of Regents of the Smithsonian Institution
(
Government Printing Office
,
Washington, DC
,
1863
), pp.
207
285
.
2.
J.
Plateau
,
Statique Experimentale et théOrique des Liquides Soumis Aux Seules Forces MoléCulaires
(
Gauthier–Villars
,
Paris
,
1873
).
3.
R.
Courant
,
Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces
(
Dover Publications, New York
,
2005
).
4.
J. C. C.
Nitsche
,
Lectures on Minimal Surfaces
, Reissue ed. (
Cambridge University Press
,
New York
,
2011
), Vol.
1
.
5.
W. H.
Meeks
and
J.
Perez
 III
, “
The classical theory of minimal surfaces
,”
Bull. Am. Math. Soc.
48
(
3
),
325
407
(
2011
).
6.
U.
Dierkes
,
S.
Hildebrandt
, and
A. J.
Tromba
, “
Global analysis of minimal surfaces
,” in
Global Analysis of Minimal Surfaces
(
Springer-Verlag
,
Berlin
,
2010
), Vol.
341
, pp.
3
529
.
7.
S. T.
Hyde
and
G. E.
Schroder-Turk
, “
Geometry of interfaces: Topological complexity in biology and materials
,”
Interface Focus
2
(
5
),
529
538
(
2012
).
8.
R. D.
Kamien
and
T. C.
Lubensky
, “
Minimal surfaces, screw dislocations, and twist grain boundaries
,”
Phys. Rev. Lett.
82
(
14
),
2892
2895
(
1999
).
9.
K.
GrosseBrauckmann
, “
On gyroid interfaces
,”
J. Colloid Interface Sci.
187
(
2
),
418
428
(
1997
).
10.
R. W.
Balluffi
,
S. M.
Allen
,
W. C.
Carter
, and
R. A.
Kemper
,
Kinetics of Materials
(
J. Wiley & Sons
,
Hoboken, New Jersey
,
2005
).
11.
G. B.
Arfken
,
H. J.
Weber
, and
F. E.
Harris
,
Mathematical Methods for Physicists
, 7th ed. (
Elsevier Academic Press
,
New York
,
2012
), p.
1220
.
12.
O.
Al-Ketan
and
R. K.
Abu Al-Rub
, “
Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices
,”
Adv. Eng. Mater.
21
(
10
),
1900524
(
2019
).
13.
K.
Grosse-Brauckmann
, “
Triply periodic minimal and constant mean curvature surfaces
,”
Interface Focus
2
(
5
),
582
588
(
2012
).
14.
G. P.
Alexander
and
T.
Machon
, “
A Bjorling representation for Jacobi fields on minimal surfaces and soap film instabilities
,”
Proc. R. Soc. A
476
(
2238
),
20190903
(
2020
).
15.
E. A.
Matsumoto
,
R. D.
Kamien
, and
C. D.
Santangelo
, “
Smectic pores and defect cores
,”
Interface Focus
2
(
5
),
617
622
(
2012
).
16.
L.
Salkin
,
A.
Schmit
,
P.
Panizza
, and
L.
Courbin
, “
Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films
,”
Am. J. Phys.
82
(
9
),
839
847
(
2014
).
17.
M. M.
Alimov
and
K. G.
Kornev
, “
Analysis of the shape hysteresis of a soap film supported by two circular rings
,”
Fluid Dyn.
54
(
1
),
42
55
(
2019
).
18.
M. M.
Alimov
,
A. V.
Bazilevsky
, and
K. G.
Kornev
, “
Minimal surfaces on mirror-symmetric frames: A fluid dynamics analogy
,”
J. Fluid Mech.
897
,
A36
(
2020
).
19.
S. A.
Chaplygin
, “
Gas jets
,”
Uchenie Zapiski Imperatorskogo Moskovskogo Universiteta
21
,
121
(
1904
).
20.
L.
Giomi
and
L.
Mahadevan
, “
Minimal surfaces bounded by elastic lines
,”
Proc. R. Soc. A
468
(
2143
),
1851
1864
(
2012
).
21.
Y. C.
Chen
and
E.
Fried
, “
Stability and bifurcation of a soap film spanning a flexible loop
,”
J. Elasticity
116
(
1
),
75
100
(
2014
).
22.
A.
Biria
and
E.
Fried
, “
Theoretical and experimental study of the stability of a soap film spanning a flexible loop
,”
Int. J. Eng. Sci.
94
,
86
102
(
2015
).
23.
L.
Bers
,
Mathematical Aspects of Subsonic and Transonic Gas Dynamics
(
Dover Publications
,
2016
).
24.
M. M.
Alimov
and
K. G.
Kornev
, “
Meniscus on a shaped fibre: Singularities and hodograph formulation
,”
Proc. R. Soc. A
470
(
2168
),
20140113
(
2014
).
25.
R. V.
Goldstein
and
V. M.
Entov
,
Qualitative Methods in Continuum Mechanics
(
Longman & Wiley
,
New York
,
1994
).
26.
J. F.
Carrier
and
M.
Krook
,
Functions of a Complex Variable: Theory and Technique
(
Society for Industrial & Applied Math
,
New York
,
2005
).
27.
M. M.
Alimov
and
K. G.
Kornev
, “
An external meniscus on a thin ovoidal fiber (the case of full wetting)
,”
Fluid Dyn.
52
(
4
),
547
560
(
2017
).
28.
J.
Seiwert
,
J.
Pierre
, and
B.
Dollet
, “
Coupled vibrations of a meniscus and liquid films
,”
J. Fluid Mech.
788
,
183
208
(
2016
).
29.
F. S. L.
Bobbert
,
K.
Lietaert
,
A. A.
Eftekhari
,
B.
Pouran
,
S. M.
Ahmadi
,
H.
Weinans
, and
A. A.
Zadpoor
, “
Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties
,”
Acta Biomater.
53
,
572
584
(
2017
).
30.
S. J. P.
Callens
,
N.
Tumer
, and
A. A.
Zadpoor
, “
Hyperbolic origami-inspired folding of triply periodic minimal surface structures
,”
Appl. Mater. Today
15
,
453
461
(
2019
).

Supplementary Material

You do not currently have access to this content.