Despite growing interest in the focusing and manipulation of particles in non-Newtonian fluids in confined flows, the combined effect of viscoelastic and shear-thinning effects on particle dynamics is not well understood. Herein, we report the dynamics of rigid microparticles in confined flows of strongly shear-thinning viscoelastic (STVE) fluids at very low Reynolds numbers. Our experiments with different STVE fluids reveal five different regimes: original streamline, bimodal, center migration, defocusing, and wall migration (WM), depending upon the fluid properties and flow rates. It is found that the occurrence of the different regimes depends on the STVE parameter (ψ) and average strain rate (γ̇¯). We find that the dynamics of particles in the different regimes is underpinned by the synergy between viscoelastic lift force (FVE) and shear-thinning lift force (FST). Numerical simulation results of strain rate and viscosity profiles at different ψ and γ̇¯ enable estimation of the forces and explaining the dynamics observed. We expect that our study will find relevance in applications involving positioning and manipulation of particles in confined flows of STVE fluids.

1.
X.
Lu
,
C.
Liu
,
G.
Hu
, and
X.
Xuan
, “Particle manipulations in non-Newtonian microfluidics: A review,”
J. Colloid Interface Sci.
500
,
182
(
2017
).
2.
R. P.
Chhabra
, “Non-Newtonian fluids: An introduction,”
Rheol. Complex Fluids
3
,
3
34
(
2010
).
3.
J. R.
Gomez-Solano
,
A.
Blokhuis
, and
C.
Bechinger
, “Dynamics of Self-Propelled Janus Particles in Viscoelastic Fluids,”
Phys. Rev. Lett.
116
,
138301
(
2016
).
4.
J. D.
Evans
,
I. L.
Palhares Junior
, and
C. M.
Oishi
, “Stresses of PTT, Giesekus, and Oldroyd-B fluids in a Newtonian velocity field near the stick-slip singularity,”
Phys. Fluids
29
,
121604
(
2017
).
5.
H.
Giesekus
, “A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility,”
J. Non-Newtonian Fluid Mech.
11
,
69
(
1982
).
6.
P.
Yue
,
J.
Dooley
, and
J. J.
Feng
, “A general criterion for viscoelastic secondary flow in pipes of noncircular cross section,”
J. Rheol.
52
,
315
(
2008
).
7.
H.
Feng
,
J. J.
Magda
, and
B. K.
Gale
, “Viscoelastic second normal stress difference dominated multiple-stream particle focusing in microfluidic channels,”
Appl. Phys. Lett.
115
,
263702
(
2019
).
8.
D.
Yuan
,
Q.
Zhao
,
S.
Yan
,
S. Y.
Tang
,
G.
Alici
,
J.
Zhang
, and
W.
Li
, “Recent progress of particle migration in viscoelastic fluids,”
Lab Chip
18
,
551
(
2018
).
9.
M. M.
Villone
,
G.
D'Avino
,
M. A.
Hulsen
,
F.
Greco
, and
P. L.
Maffettone
, “Particle motion in square channel flow of a viscoelastic liquid: Migration vs secondary flows,”
J. Non-Newtonian Fluid Mech.
195
,
1
(
2013
).
10.
M. M.
Villone
and
P. L.
Maffettone
, “Dynamics, rheology, and applications of elastic deformable particle suspensions: A review,”
Rheol. Acta
58
,
109
(
2019
).
11.
F.
Del Giudice
,
G.
D'Avino
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “Effect of fluid rheology on particle migration in a square-shaped microchannel,”
Microfluid. Nanofluid.
19
,
95
(
2015
).
12.
S.
Hazra
,
S. K.
Mitra
, and
A. K.
Sen
, “Cross-stream migration of droplets in a confined shear-thinning viscoelastic flow: Role of shear-thinning induced lift,”
Phys. Fluids
32
,
092007
(
2020
).
13.
B.
Nath
,
M. P.
Borthakur
, and
G.
Biswas
, “Electric field induced dynamics of viscoplastic droplets in shear flow,”
Phys. Fluids
32
,
092110
(
2020
).
14.
T.
Yoshida
,
Y.
Tasaka
, and
Y.
Murai
, “Effective viscoelasticity of non-Newtonian fluids modulated by large-spherical particles aligned under unsteady shear,”
Phys. Fluids
31
,
103304
(
2019
).
15.
T.
Ye
,
D.
Pan
,
C.
Huang
, and
M.
Liu
, “Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications,”
Phys. Fluids
31
,
011301
(
2019
).
16.
P. M.
Mwasame
,
N. J.
Wagner
, and
A. N.
Beris
, “On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia,”
Phys. Fluids
30
,
030704
(
2018
).
17.
M.
Ellero
, “SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix,”
Phys. Fluids
29
,
121609
(
2017
).
18.
D.
Wang
,
D. S.
Tan
, and
D. S.
Tan
, “A lattice Boltzmann modeling of the bubble velocity discontinuity (BVD) in shear-thinning viscoelastic fluids,”
Phys. Fluids
33
,
033108
(
2021
).
19.
M. A.
Tehrani
, “An experimental study of particle migration in pipe flow of viscoelastic fluids,”
J. Rheol.
40
,
1057
(
1996
).
20.
A. M.
Leshansky
,
A.
Bransky
,
N.
Korin
, and
U.
Dinnar
, “Tunable nonlinear viscoelastic ‘focusing’ in a microfluidic device,”
Phys. Rev. Lett.
98
,
234501
(
2007
).
21.
S.
Yang
,
J. Y.
Kim
,
S. J.
Lee
,
S. S.
Lee
, and
J. M.
Kim
, “Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel,”
Lab Chip
11
,
266
(
2011
).
22.
K.
Kang
,
S. S.
Lee
,
K.
Hyun
,
S. J.
Lee
, and
J. M.
Kim
, “DNA-based highly tunable particle focuser,”
Nat. Commun.
4
,
2567
(
2013
).
23.
G.
Holzner
,
S.
Stavrakis
, and
A.
Demello
, “Elasto-inertial focusing of mammalian cells and bacteria using low molecular, low viscosity PEO solutions,”
Anal. Chem.
89
,
11653
(
2017
).
24.
E. J.
Lim
,
T. J.
Ober
,
J. F.
Edd
,
S. P.
Desai
,
D.
Neal
,
K. W.
Bong
,
P. S.
Doyle
,
G. H.
McKinley
, and
M.
Toner
, “Inertio-elastic focusing of bioparticles in microchannels at high throughput,”
Nat. Commun.
5
,
4120
(
2014
).
25.
F.
Gauthier
,
H. L.
Goldsmith
, and
S. G.
Mason
, “Particle motions in non-Newtonian media. II. Poiseuille Flow,”
Trans. Soc. Rheol.
15
,
297
(
1971
).
26.
S.
Caserta
,
G.
D'Avino
,
F.
Greco
,
S.
Guido
, and
P. L.
Maffettone
, “Migration of a sphere in a viscoelastic fluid under planar shear flow: Experiments and numerical predictions,”
Soft Matter
7
,
1100
(
2011
).
27.
P.
Wang
,
Z.
Yu
, and
J.
Lin
, “Numerical simulations of particle migration in rectangular channel flow of Giesekus viscoelastic fluids,”
J. Non-Newtonian Fluid Mech.
262
,
142
(
2018
).
28.
P. Y.
Huang
,
J.
Feng
,
H. H.
Hu
, and
D. D.
Joseph
, “Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids,”
J. Fluid Mech.
343
,
73
(
1997
).
29.
G.
D'Avino
,
G.
Romeo
,
M. M.
Villone
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipeflow-focuser,”
Lab Chip
12
,
1638
(
2012
).
30.
G.
Li
,
G. H.
McKinley
, and
A. M.
Ardekani
, “Dynamics of particle migration in channel flow of viscoelastic fluids,”
J. Fluid Mech.
785
,
486
(
2015
).
31.
H.
Lim
,
J.
Nam
, and
S.
Shin
, “Lateral migration of particles suspended in viscoelastic fluids in a microchannel flow,”
Microfluid. Nanofluid.
17
,
683
(
2014
).
32.
D.
Yuan
,
S. H.
Tan
,
R.
Sluyter
,
Q.
Zhao
,
S.
Yan
,
N. T.
Nguyen
,
J.
Guo
,
J.
Zhang
, and
W.
Li
, “On-chip microparticle and cell washing using coflow of viscoelasticfluid and Newtonian fluid,”
Anal. Chem.
89
,
9574
(
2017
).
33.
S.
Hazra
,
K. S.
Jayaprakash
,
K.
Pandian
,
A.
Raj
,
S. K.
Mitra
, and
A. K.
Sen
, “Non-inertial lift induced migration for label-free sorting of cells in a co-flowing aqueous two-phase system,”
Analyst
144
,
2574
(
2019
).
34.
S.
Hazra
,
S. K.
Mitra
, and
A. K.
Sen
, “Lateral migration of viscoelastic droplets in a viscoelastic confined flow: Role of discrete phase viscoelasticity,”
Soft Matter
15
,
9003
(
2019
).
35.
S.
Wang
,
C.
Tai
, and
V.
Narsimhan
, “Dynamics of spheroids in an unbound quadratic flow of a general second-order fluid,”
Phys. Fluids
32
,
113106
(
2020
).
36.
C.
Liu
,
B.
Ding
,
C.
Xue
,
Y.
Tian
,
G.
Hu
, and
J.
Sun
, “Sheathless Focusing and Separation of Diverse Nanoparticles in Viscoelastic Solutions with Minimized Shear Thinning,”
Anal. Chem.
88
,
12547
(
2016
).
37.
C.
Liu
,
J.
Guo
,
F.
Tian
,
N.
Yang
,
F.
Yan
,
Y.
Ding
,
J.
Wei
,
G.
Hu
,
G.
Nie
, and
J.
Sun
, “Field-free isolation of exosomes from extracellular vesicles by microfluidicviscoelastic flows,”
ACS Nano
11
,
6968
(
2017
).
38.
F.
Del Giudice
,
S.
Sathish
,
G.
D'Avino
, and
A. Q.
Shen
, “‘From the Edge to the Center’: Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel,”
Anal. Chem.
89
,
13146
(
2017
).
39.
R.
Bird
,
Dynamics of Polymeric Liquids
(Wiley,
1987
), Vol.
1
.
40.
M. M.
Cross
, “Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems,”
J. Colloid Sci.
20
,
417
(
1965
).
41.
R.
Poole
, “The Deborah and Weissenberg numbers,”
Br. Soc. Rheol.–Rheol. Bull.
53
,
32
(
2012
).
42.
P.
Sajeesh
,
M.
Doble
, and
A. K.
Sen
, “Hydrodynamic resistance and mobility of deformable objects in microfluidic channels,”
Biomicrofluidics
8
,
054112
(
2014
).
43.
K. W.
Ebagninin
,
A.
Benchabane
, and
K.
Bekkour
, “Rheological characterization of poly(ethylene oxide) solutions of different molecular weights,”
J. Colloid Interface Sci.
336
,
360
(
2009
).
44.
Y.
Liu
,
Y.
Jun
, and
V.
Steinberg
, “Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions,”
J. Rheol.
53
,
1069
(
2009
).
45.
V. N.
Kalashnikov
, “Shear-rate dependent viscosity of dilute polymer solutions,”
J. Rheol.
38
,
1385
(
1994
).
46.
D.
Li
,
X.
Lu
, and
X.
Xuan
, “Viscoelastic separation of particles by size in straight rectangular microchannels: A parametric study for a refined understanding,”
Anal. Chem.
88
,
12303
(
2016
).
47.
L.
Derzsi
,
M.
Kasprzyk
,
J. P.
Plog
, and
P.
Garstecki
, “Flow focusing with viscoelastic liquids,”
Phys. Fluids
25
,
092001
(
2013
).
48.
I.
Teraoka
,
Polymer Solutions: An Introduction to Physical Properties
(
Wiley
,
2002
).
49.
N. S.
Davidson
,
L. J.
Fetters
,
W. G.
Funk
, and
N.
Hadjichristidis
, “Measurement of chain dimensions in dilute polymer solutions: A light scattering and viscometric study of linear polyisoprene in cyclohexane,”
Macromoelcules
20
,
2614
(
1987
).
50.
B.
Hammouda
and
D. L.
Ho
, “Insight into chain dimensions in PEO/water solutions,”
J. Polym. Sci. Part B
45
,
2196
(
2007
).

Supplementary Material

You do not currently have access to this content.