A port-Hamiltonian model for compressible Newtonian fluid dynamics is presented in entirely coordinate-independent geometric fashion. This is achieved by the use of tensor-valued differential forms that allow us to describe the interconnection of the power preserving structure which underlies the motion of perfect fluids to a dissipative port which encodes Newtonian constitutive relations of shear and bulk stresses. The relevant diffusion and the boundary terms characterizing the Navier–Stokes equations on a general Riemannian manifold arise naturally from the proposed construction.

1.
J.
Marsden
and
R.
Abraham
, “
Hamiltonian mechanics on Lie groups and hydrodynamics
,” in
Proceedings of the Symposium of Pure Mathematics
,
1970
, pp.
237
244
.
2.
J. E.
Marsden
,
T.
Raţiu
, and
A.
Weinstein
, “
Semidirect products and reduction in mechanics
,”
Trans. Am. Math. Soc.
281
,
147
177
(
1984
).
3.
J. E.
Marsden
,
T. S.
Ratiu
, and
A.
Weinstein
, “
Reduction and Hamiltonian structures on duals of semidirect product lie algebras
,” in
Fluids and Plasmas: Geometry and Dynamics
, Contemporary Mathematics (
American Mathematical Society
,
1984
), Vol.
28
, pp.
55
100
.
4.
P. J.
Morrison
, “
Hamiltonian description of the ideal fluid
,”
Rev. Mod. Phys.
70
,
467
521
(
1998
).
5.
V. I.
Arnold
and
B. A.
Khesin
,
Topological Methods in Hydrodynamics
(
Springer Publishing Company, Inc
.,
2013
).
6.
V.
Duindam
,
A.
Macchelli
,
S.
Stramigioli
, and
H.
Bruyninckx
,
Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach
(
Springer Science and Business Media
,
2009
).
7.
A. J.
Van Der Schaft
and
B. M.
Maschke
, “
Hamiltonian formulation of distributed-parameter systems with boundary energy flow
,”
J. Geom. Phys.
42
,
166
194
(
2002
).
8.
R.
Rashad
,
F.
Califano
,
A. J.
van der Schaft
, and
S.
Stramigioli
, “
Twenty years of distributed port-Hamiltonian systems: A literature review
,”
IMA J. Math. Control Inf.
37
,
1400
1422
(
2020
).
9.
A. J.
Van Der Schaft
and
B. M.
Maschke
, “
Fluid dynamical systems as Hamiltonian boundary control systems
,” in
Proceedings of the IEEE Conference on Decision and Control
,
2001
, Vol.
5
, pp.
4497
4502
.
10.
R.
Altmann
and
P.
Schulze
, “
Systems and control letters a port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows
,”
Syst. Control Lett.
100
,
51
55
(
2017
).
11.
L. A.
Mora
,
L. G.
Yann
,
H.
Ramirez
, and
J.
Yuz
, “
Fluid-structure port-Hamiltonian model for incompressible flows in tubes with time varying geometries
,”
Math. Comput. Modell. Dyn. Syst.
26
,
409
433
(
2020
).
12.
F. L.
Cardoso-Ribeiro
,
D.
Matignon
, and
V.
Pommier-Budinger
, “
A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system
,”
J. Fluids Struct.
69
,
402
427
(
2017
).
13.
A. D.
Gilbert
and
J.
Vanneste
, “
A geometric look at momentum flux and stress in fluid mechanics
,” arXiv:1911.06613 [physics.flu-dyn] (
2019
).
14.
R.
Abraham
,
J. E.
Marsden
, and
T.
Ratiu
,
Manifolds, Tensor Analysis, and Applications
(
Springer Science and Business Media
,
2012
), Vol.
75
.
15.
J. E.
Marsden
,
D. G.
Ebin
, and
A. E.
Fischer
, “
Diffeomorphism groups, hydrodynamics, and relativity
,” in
Proceedings of the 13th Biennial Seminar of the Canadian Mathematical Congress
,
1972
, pp.
135
279
.
16.
D. N.
Arnold
,
R. S.
Falk
, and
R.
Winther
, “
Finite element exterior calculus, homological techniques, and applications
,”
Acta Numer.
15
,
1
155
(
2006
).
17.
I.
Nitschke
,
S.
Reuther
, and
A.
Voigt
, “
Discrete exterior calculus (dec) for the surface Navier-Stokes equation
,” in
Transport Processes at Fluidic Interfaces
(
Springer
,
2017
), pp.
177
197
.
18.
M. S.
Mohamed
,
A. N.
Hirani
, and
R.
Samtaney
, “
Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes
,”
J. Comput. Phys.
312
,
175
191
(
2016
).
19.
P.
Jagad
,
A.
Abukhwejah
,
M.
Mohamed
, and
R.
Samtaney
, “
A primitive variable discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes
,”
Phys. Fluids
33
,
017114
(
2021
).
20.
C. H.
Chan
,
M.
Czubak
, and
M. M.
Disconzi
, “
The formulation of the Navier–Stokes equations on Riemannian manifolds
,”
J. Geom. Phys.
121
,
335
346
(
2017
).
21.
T.
Frankel
,
The Geometry of Physics: An Introduction
(
Cambridge University Press
,
2011
).
22.
D.
Toshniwal
,
R. H. M.
Huijsmans
, and
M. I.
Gerritsma
, “
A geometric approach towards momentum conservation
,” in
Spectral and High Order Methods for Partial Differential Equations
, edited by
M.
Azaïez
,
H.
El Fekih
, and
J. S.
Hesthaven
(
Springer International Publishing
,
Cham
,
2014
), pp.
393
402
.
23.
E.
Kanso
,
M.
Arroyo
,
Y.
Tong
,
A.
Yavari
,
J. G.
Marsden
, and
M.
Desbrun
, “
On the geometric character of stress in continuum mechanics
,”
Z. Angew. Math. Phys.
58
,
843
856
(
2007
).
24.
R.
Rashad
,
F.
Califano
,
F. P.
Schuller
, and
S.
Stramigioli
, “
Port-Hamiltonian modeling of ideal fluid flow. I. Foundations and kinetic energy
,”
J. Geom. Phys.
104201
(
2021
).
25.
R.
Rashad
,
F.
Califano
,
F. P.
Schuller
, and
S.
Stramigioli
, “
Port-Hamiltonian modeling of ideal fluid flow. II. Compressible and incompressible flow
,”
J. Geom. Phys.
104199
(
2021
).
26.
M. H.
Kobayashi
, “
On the Navier-Stokes equations on manifolds with curvature
,”
J. Eng. Math.
60
,
55
68
(
2008
).
27.
J.-D.
Debus
,
M.
Mendoza
,
S.
Succi
, and
H. J.
Herrmann
, “
Energy dissipation in flows through curved spaces
,”
Sci. Rep.
7
,
42350
(
2017
).
28.
F.
Califano
,
R.
Rashad
,
A.
Dijkshoorn
,
L.
Groot Koerkamp
,
R.
Sneep
,
A.
Brugnoli
, and
S.
Stramigioli
, “
Decoding and realising flapping flight with port-Hamiltonian system theory
,”
Annu. Rev. Control
(unpublished
2021
).
29.
A.
Van der Schaft
and
B.
Maschke
, “
Geometry of thermodynamic processes
,”
Entropy
20
,
925
(
2018
).
You do not currently have access to this content.