A port-Hamiltonian model for compressible Newtonian fluid dynamics is presented in entirely coordinate-independent geometric fashion. This is achieved by the use of tensor-valued differential forms that allow us to describe the interconnection of the power preserving structure which underlies the motion of perfect fluids to a dissipative port which encodes Newtonian constitutive relations of shear and bulk stresses. The relevant diffusion and the boundary terms characterizing the Navier–Stokes equations on a general Riemannian manifold arise naturally from the proposed construction.
References
1.
J.
Marsden
and R.
Abraham
, “Hamiltonian mechanics on Lie groups and hydrodynamics
,” in Proceedings of the Symposium of Pure Mathematics
, 1970
, pp. 237
–244
.2.
J. E.
Marsden
, T.
Raţiu
, and A.
Weinstein
, “Semidirect products and reduction in mechanics
,” Trans. Am. Math. Soc.
281
, 147
–177
(1984
).3.
J. E.
Marsden
, T. S.
Ratiu
, and A.
Weinstein
, “Reduction and Hamiltonian structures on duals of semidirect product lie algebras
,” in Fluids and Plasmas: Geometry and Dynamics
, Contemporary Mathematics (American Mathematical Society
, 1984
), Vol. 28
, pp. 55
–100
.4.
P. J.
Morrison
, “Hamiltonian description of the ideal fluid
,” Rev. Mod. Phys.
70
, 467
–521
(1998
).5.
V. I.
Arnold
and B. A.
Khesin
, Topological Methods in Hydrodynamics
(Springer Publishing Company, Inc
., 2013
).6.
V.
Duindam
, A.
Macchelli
, S.
Stramigioli
, and H.
Bruyninckx
, Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach
(Springer Science and Business Media
, 2009
).7.
A. J.
Van Der Schaft
and B. M.
Maschke
, “Hamiltonian formulation of distributed-parameter systems with boundary energy flow
,” J. Geom. Phys.
42
, 166
–194
(2002
).8.
R.
Rashad
, F.
Califano
, A. J.
van der Schaft
, and S.
Stramigioli
, “Twenty years of distributed port-Hamiltonian systems: A literature review
,” IMA J. Math. Control Inf.
37
, 1400
–1422
(2020
).9.
A. J.
Van Der Schaft
and B. M.
Maschke
, “Fluid dynamical systems as Hamiltonian boundary control systems
,” in Proceedings of the IEEE Conference on Decision and Control
, 2001
, Vol. 5
, pp. 4497
–4502
.10.
R.
Altmann
and P.
Schulze
, “Systems and control letters a port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows
,” Syst. Control Lett.
100
, 51
–55
(2017
).11.
L. A.
Mora
, L. G.
Yann
, H.
Ramirez
, and J.
Yuz
, “Fluid-structure port-Hamiltonian model for incompressible flows in tubes with time varying geometries
,” Math. Comput. Modell. Dyn. Syst.
26
, 409
–433
(2020
).12.
F. L.
Cardoso-Ribeiro
, D.
Matignon
, and V.
Pommier-Budinger
, “A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system
,” J. Fluids Struct.
69
, 402
–427
(2017
).13.
A. D.
Gilbert
and J.
Vanneste
, “A geometric look at momentum flux and stress in fluid mechanics
,” arXiv:1911.06613 [physics.flu-dyn] (2019
).14.
R.
Abraham
, J. E.
Marsden
, and T.
Ratiu
, Manifolds, Tensor Analysis, and Applications
(Springer Science and Business Media
, 2012
), Vol. 75
.15.
J. E.
Marsden
, D. G.
Ebin
, and A. E.
Fischer
, “Diffeomorphism groups, hydrodynamics, and relativity
,” in Proceedings of the 13th Biennial Seminar of the Canadian Mathematical Congress
, 1972
, pp. 135
–279
.16.
D. N.
Arnold
, R. S.
Falk
, and R.
Winther
, “Finite element exterior calculus, homological techniques, and applications
,” Acta Numer.
15
, 1
–155
(2006
).17.
I.
Nitschke
, S.
Reuther
, and A.
Voigt
, “Discrete exterior calculus (dec) for the surface Navier-Stokes equation
,” in Transport Processes at Fluidic Interfaces
(Springer
, 2017
), pp. 177
–197
.18.
M. S.
Mohamed
, A. N.
Hirani
, and R.
Samtaney
, “Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes
,” J. Comput. Phys.
312
, 175
–191
(2016
).19.
P.
Jagad
, A.
Abukhwejah
, M.
Mohamed
, and R.
Samtaney
, “A primitive variable discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes
,” Phys. Fluids
33
, 017114
(2021
).20.
C. H.
Chan
, M.
Czubak
, and M. M.
Disconzi
, “The formulation of the Navier–Stokes equations on Riemannian manifolds
,” J. Geom. Phys.
121
, 335
–346
(2017
).21.
T.
Frankel
, The Geometry of Physics: An Introduction
(Cambridge University Press
, 2011
).22.
D.
Toshniwal
, R. H. M.
Huijsmans
, and M. I.
Gerritsma
, “A geometric approach towards momentum conservation
,” in Spectral and High Order Methods for Partial Differential Equations
, edited by M.
Azaïez
, H.
El Fekih
, and J. S.
Hesthaven
(Springer International Publishing
, Cham
, 2014
), pp. 393
–402
.23.
E.
Kanso
, M.
Arroyo
, Y.
Tong
, A.
Yavari
, J. G.
Marsden
, and M.
Desbrun
, “On the geometric character of stress in continuum mechanics
,” Z. Angew. Math. Phys.
58
, 843
–856
(2007
).24.
R.
Rashad
, F.
Califano
, F. P.
Schuller
, and S.
Stramigioli
, “Port-Hamiltonian modeling of ideal fluid flow. I. Foundations and kinetic energy
,” J. Geom. Phys.
104201
(2021
).25.
R.
Rashad
, F.
Califano
, F. P.
Schuller
, and S.
Stramigioli
, “Port-Hamiltonian modeling of ideal fluid flow. II. Compressible and incompressible flow
,” J. Geom. Phys.
104199
(2021
).26.
M. H.
Kobayashi
, “On the Navier-Stokes equations on manifolds with curvature
,” J. Eng. Math.
60
, 55
–68
(2008
).27.
J.-D.
Debus
, M.
Mendoza
, S.
Succi
, and H. J.
Herrmann
, “Energy dissipation in flows through curved spaces
,” Sci. Rep.
7
, 42350
(2017
).28.
F.
Califano
, R.
Rashad
, A.
Dijkshoorn
, L.
Groot Koerkamp
, R.
Sneep
, A.
Brugnoli
, and S.
Stramigioli
, “Decoding and realising flapping flight with port-Hamiltonian system theory
,” Annu. Rev. Control
(unpublished 2021
).29.
A.
Van der Schaft
and B.
Maschke
, “Geometry of thermodynamic processes
,” Entropy
20
, 925
(2018
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.