Topology and geometry of a sphere create constraints for particles that lie on its surface, which they otherwise do not experience in Euclidean space. Notably, the number of particles and the size of the system can be varied separately, requiring a careful treatment of systems with one or several characteristic length scales. All this can make it difficult to precisely determine whether a particular system is in a disordered, fluid-like, or crystal-like state. Here, we show how order transitions in systems of particles interacting on the surface of a sphere can be detected by changes in two hyperuniformity parameters, derived from a spherical structure factor and cap number variance. We demonstrate their use on two different systems—solutions of the thermal Thomson problem and particles interacting via an ultra-soft potential of the generalized exponential model of order 4—each with a distinct parameter regulating their degree of ordering. The hyperuniformity parameters are able to not only detect the order transitions in both systems but also point out the clear differences in the ordered distributions in each due to the nature of the interaction leading to them. Our study shows that hyperuniformity analysis of particle distributions on the sphere provides a powerful insight into fluid- and crystal-like orders on the sphere.

1.
G. M.
Grason
, “
Perspective: Geometrically frustrated assemblies
,”
J. Chem. Phys.
145
,
110901
(
2016
).
2.
V. N.
Manoharan
, “
Colloidal matter: Packing, geometry, and entropy
,”
Science
349
,
1253751
(
2015
).
3.
S. P.
Giarritta
,
M.
Ferrario
, and
P.
Giaquinta
, “
Statistical geometry of hard particles on a sphere
,”
Physica A
187
,
456
474
(
1992
).
4.
R. E.
Guerra
,
C. P.
Kelleher
,
A. D.
Hollingsworth
, and
P. M.
Chaikin
, “
Freezing on a sphere
,”
Nature
554
,
346
(
2018
).
5.
Y.
Chen
,
Z.
Yao
,
S.
Tang
,
H.
Tong
,
T.
Yanagishima
,
H.
Tanaka
, and
P.
Tan
, “
Morphology selection kinetics of crystallization in a sphere
,”
Nat. Phys.
17
,
121
127
(
2021
).
6.
N.
Vogel
,
S.
Utech
,
G. T.
England
,
T.
Shirman
,
K. R.
Phillips
,
N.
Koay
,
I. B.
Burgess
,
M.
Kolle
,
D. A.
Weitz
, and
J.
Aizenberg
, “
Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies
,”
Proc. Natl. Acad. Sci. U.S A.
112
,
10845
10850
(
2015
).
7.
G.
Jacucci
,
S.
Vignolini
, and
L.
Schertel
, “
The limitations of extending nature's color palette in correlated, disordered systems
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
23345
23349
(
2020
).
8.
E. H.
Yong
,
D. R.
Nelson
, and
L.
Mahadevan
, “
Elastic platonic shells
,”
Phys. Rev. Lett.
111
,
177801
(
2013
).
9.
M.
Brojan
,
D.
Terwagne
,
R.
Lagrange
, and
P. M.
Reis
, “
Wrinkling crystallography on spherical surfaces
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
14
19
(
2015
).
10.
Z.
Yao
, “
Command of collective dynamics by topological defects in spherical crystals
,”
Phys. Rev. Lett.
122
,
228002
(
2019
).
11.
J. C.-Y.
Wang
,
S.
Mukhopadhyay
, and
A.
Zlotnick
, “
Geometric defects and icosahedral viruses
,”
Viruses
10
,
25
(
2018
).
12.
R.
Zandi
,
B.
Dragnea
,
A.
Travesset
, and
R.
Podgornik
, “
On virus growth and form
,”
Phys. Rep.
847
,
1
102
(
2020
).
13.
D. S.
Roshal
,
K.
Azzag
,
E. Le
Goff
,
S. B.
Rochal
, and
S.
Baghdiguian
, “
Crystal-like order and defects in metazoan epithelia with spherical geometry
,”
Sci. Rep.
10
,
7652
(
2020
).
14.
R.
Fantoni
,
J. W.
Salari
, and
B.
Klumperman
, “
Structure of colloidosomes with tunable particle density: Simulation versus experiment
,”
Phys. Rev. E
85
,
061404
(
2012
).
15.
K. L.
Thompson
,
M.
Williams
, and
S. P.
Armes
, “
Colloidosomes: Synthesis, properties and applications
,”
J. Colloid Interface Sci.
447
,
217
228
(
2015
).
16.
T.
Bollhorst
,
K.
Rezwan
, and
M.
Maas
, “
Colloidal capsules: Nano-and microcapsules with colloidal particle shells
,”
Chem. Soc. Rev.
46
,
2091
2126
(
2017
).
17.
J.
Wang
,
C. F.
Mbah
,
T.
Przybilla
,
B. A.
Zubiri
,
E.
Spiecker
,
M.
Engel
, and
N.
Vogel
, “
Magic number colloidal clusters as minimum free energy structures
,”
Nat. Commun.
9
,
1
10
(
2018
).
18.
A.
Gnidovec
and
S.
Čopar
, “
Orientational ordering of point dipoles on a sphere
,”
Phys. Rev. B
102
,
075416
(
2020
).
19.
S.
Čopar
and
A.
Božič
, “
Symmetry breaking of dipole orientations on Caspar-Klug lattices
,”
Phys. Rev. Res.
2
,
043199
(
2020
).
20.
A.
Gnidovec
and
S.
Čopar
, “
Long-range order in quadrupolar systems on spherical surfaces
,” arXiv:2101.11660 [cond-mat] (
2021
).
21.
H.
Tanaka
,
H.
Tong
,
R.
Shi
, and
J.
Russo
, “
Revealing key structural features hidden in liquids and glasses
,”
Nat. Rev. Phys.
1
,
333
348
(
2019
).
22.
C. P.
Royall
and
S. R.
Williams
, “
The role of local structure in dynamical arrest
,”
Phys. Rep.
560
,
1
75
(
2015
).
23.
J. E.
Hallett
,
F.
Turci
, and
C. P.
Royall
, “
Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations
,”
Nat. Commun.
9
,
3272
(
2018
).
24.
G.
Markovich
,
L.
Perera
,
M. L.
Berkowitz
, and
O.
Cheshnovsky
, “
The solvation of Cl-,Br-, and I- in acetonitrile clusters: Photoelectronspectroscopy and molecular dynamics simulations
,”
J. Chem. Phys.
105
,
2675
(
1996
).
25.
R.
Sharma
,
S. N.
Chakraborty
, and
C.
Chakravarty
, “
Entropy, diffusivity, and structural order in liquids with waterlike anomalies
,”
J. Chem. Phys.
125
,
204501
(
2006
).
26.
C. P.
Royall
and
W.
Kob
, “
Locally favoured structures and dynamic length scales in a simple glass-former
,”
J. Stat. Mech.: Theory Exp.
2017
,
024001
.
27.
Z.
Zhang
and
W.
Kob
, “
Revealing the three-dimensional structure of liquids using four-point correlation functions
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
14032
14037
(
2020
).
28.
N.
Singh
,
A.
Sood
, and
R.
Ganapathy
, “
Cooperatively rearranging regions change shape near the mode-coupling crossover for colloidal liquids on a sphere
,”
Nat. Commun.
11
,
1
7
(
2020
).
29.
M. J.
Bowick
and
L.
Giomi
, “
Two-dimensional matter: Order, curvature and defects
,”
Adv. Phys.
58
,
449
563
(
2009
).
30.
D. J.
Wales
and
S.
Ulker
, “
The Cambridge cluster database: Global minima for the Thomson problem
,” Phys. Rev. B 79, 224115 (2009), available at http://www-wales.ch.cam.ac.uk/~wales/CCD/Thomson2/table.html.
31.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
(
1983
).
32.
Y.
Li
,
H.
Miao
,
H.
Ma
, and
J. Z.
Chen
, “
Topological defects of tetratic liquid-crystal order on a soft spherical surface
,”
Soft Matter
9
,
11461
11466
(
2013
).
33.
J.-P.
Vest
,
G.
Tarjus
, and
P.
Viot
, “
Glassy dynamics of dense particle assemblies on a spherical substrate
,”
J. Chem. Phys.
148
,
164501
(
2018
).
34.
M.
Mosayebi
,
D. K.
Shoemark
,
J. M.
Fletcher
,
R. B.
Sessions
,
N.
Linden
,
D. N.
Woolfson
, and
T. B.
Liverpool
, “
Beyond icosahedral symmetry in packings of proteins in spherical shells
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
9014
9019
(
2017
).
35.
D. P.
Hardin
,
T.
Michaels
, and
E. B.
Saff
, “
A comparison of popular point configurations on S2
,”
Dolomites Research Notes on Approximation
(
Padova University Press
,
2016
), p.
9
.
36.
S.
Franzini
,
L.
Reatto
, and
D.
Pini
, “
Formation of cluster crystals in an ultra-soft potential model on a spherical surface
,”
Soft Matter
14
,
8724
8739
(
2018
).
37.
W.
Mickel
,
S. C.
Kapfer
,
G. E.
Schröder-Turk
, and
K.
Mecke
, “
Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter
,”
J. Chem. Phys.
138
,
044501
(
2013
).
38.
S.
Torquato
and
F. H.
Stillinger
, “
Local density fluctuations, hyperuniformity, and order metrics
,”
Phys. Rev. E
68
,
041113
(
2003
).
39.
S.
Torquato
, “
Hyperuniform states of matter
,”
Phys. Rep.
745
,
1
(
2018
).
40.
A.
Božič
and
S.
Čopar
, “
Hyperuniform particle distributions on the sphere
,”
Phys. Rev. E
99
,
032601
(
2019
).
41.
E.
Lomba
,
J.-J.
Weis
,
L.
Guisández
, and
S.
Torquato
, “
Minimal statistical-mechanical model for multihyperuniform patterns in avian retina
,”
Phys. Rev. E
102
,
012134
(
2020
).
42.
A. G.
Meyra
,
G. J.
Zarragoicoechea
,
A. L.
Maltz
,
E.
Lomba
, and
S.
Torquato
, “
Hyperuniformity on spherical surfaces
,”
Phys. Rev. E
100
,
022107
(
2019
).
43.
J. S.
Brauchart
,
P. J.
Grabner
, and
W.
Kusner
, “
Hyperuniform point sets on the sphere: Deterministic aspects
,”
Constructive Approximation
50
,
45
61
(
2019
).
44.
J. S.
Brauchart
,
P. J.
Grabner
,
W.
Kusner
, and
J.
Ziefle
, “
Hyperuniform point sets on the sphere: Probabilistic aspects
,”
Monatsh. Math.
192
,
763
781
(
2020
).
45.
T. A.
Stepanyuk
, “
Hyperuniform point sets on flat tori: Deterministic and probabilistic aspects
,”
Constructive Approximation
52
,
313
339
(
2020
).
46.
T. L.
Hill
,
Thermodynamics of Small Systems
(
Dover
,
2002
).
47.
A. J.
Post
and
E. D.
Glandt
, “
Statistical thermodynamics of particles adsorbed onto a spherical surface. I. Canonical ensemble
,”
J. Chem. Phys.
85
,
7349
7358
(
1986
).
48.
P.
Viveros-Méndez
,
J.
Méndez-Alcaraz
, and
P.
González-Mozuelos
, “
Two-body correlations among particles confined to a spherical surface: Packing effects
,”
J. Chem. Phys.
128
,
014701
(
2008
).
49.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol.
1
.
50.
Y.
Xiang
,
D.
Sun
,
W.
Fan
, and
X.
Gong
, “
Generalized simulated annealing algorithm and its application to the Thomson model
,”
Phys. Lett. A
233
,
216
220
(
1997
).
51.
A.
Božič
, “
From discrete to continuous description of spherical surface charge distributions
,”
Soft Matter
14
,
1149
1161
(
2018
).
52.
D. J.
Wales
and
S.
Ulker
, “
Structure and dynamics of spherical crystals characterized for the Thomson problem
,”
Phys. Rev. B
74
,
212101
(
2006
).
You do not currently have access to this content.