It is important to predict the self-propulsion performance of full-scale marine vessels during the design stage. With the development of high-performance computational techniques, full-scale ship-free running simulations focused on self-propulsion performance are receiving increased attention. This study presents the results of computational fluid dynamics (CFD) simulations for a full-scale submarine propelled by a high-skew propeller. An in-house CFD code with the dynamic overset grid approach is used to simulate the rotational motion of the propeller. First, model- and full-scale simulations focused on submarine resistance and propeller open-water performance are conducted, enabling a systematic convergence study of the model. The self-propulsion performance is then predicted at the model scale, and comparisons with other available results show only small discrepancies. Finally, full-scale submarine self-propulsion simulations are conducted and the results are compared with those from the model-scale simulations with the addition of skin friction correction. Discussions on the differences between model- and full-scale self-propulsion results are presented including propeller performance, pressure distribution, boundary layer, and wake flow.

1.
American Society of Mechanical Engineers
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer: An American National Standard
(
American Society of Mechanical Engineers
,
2009
).
2.
Amiri
,
M. M.
,
Sphaier
,
S. H.
,
Vitola
,
M. A.
, and
Esperança
,
P. T.
, “
URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift
,”
Appl. Ocean Res.
84
,
192
205
(
2019
).
3.
Asnaghi
,
A.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
, “
Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers
,”
Appl. Ocean Res.
79
,
197
214
(
2018
).
4.
Bai
,
T.
,
Wu
,
Y.
,
Wei
,
P.
,
Wang
,
S.
, and
Liu
,
L.
, “
Numerical simulation of submarine self-propulsion based on different turbulent simulation models
,” in
Proceedings of 38th ASME International Conference on Offshore Mechanics and Arctic Engineering
, Glasgow, UK (
2019
).
5.
Bhattacharyya
,
A.
,
Krasilnikov
,
V.
, and
Steen
,
S.
, “
A CFD-based scaling approach for ducted propellers
,”
Ocean Eng.
123
,
116
130
(
2016a
).
6.
Bhattacharyya
,
A.
,
Krasilnikov
,
V.
, and
Steen
,
S.
, “
Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs
,”
Ocean Eng.
112
,
226
242
(
2016b
).
7.
Carrica
,
P. M.
,
Kim
,
Y.
, and
Martin
,
J. E.
, “
Near-surface self-propulsion of a generic submarine in calm water and waves
,”
Ocean Eng.
183
,
87
105
(
2019
).
8.
Castro
,
A. M.
,
Carrica
,
P. M.
, and
Stern
,
F.
, “
Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS
,”
Comput. Fluids
51
(
1
),
35
47
(
2011
).
9.
Chase
,
N.
,
Simulations of the DARPA Suboff Submarine Including Self-Propulsion with the E1619 Propeller
(
University of Iowa
,
Iowa City, USA
,
2012
).
10.
Chase
,
N.
, and
Carrica
,
P. M.
, “
Submarine propeller computations and application to self-propulsion of DARPA Suboff
,”
Ocean Eng.
60
,
68
80
(
2013
).
11.
Di Felice
,
F.
,
Felli
,
M.
,
Liefvendahl
,
M.
, and
Svennberg
,
U.
, “
Numerical and experimental analysis of the wake behavior of a generic submarine propeller
,” in
First International Symposium on Marine Propulsors
, Trondheim, Norway (
2009
).
12.
Dubbioso
,
G.
,
Broglia
,
R.
, and
Zaghi
,
S.
, “
CFD analysis of turning abilities of a submarine model
,”
Ocean Eng.
129
,
459
479
(
2017
).
13.
Farkas
,
A.
,
Degiuli
,
N.
, and
Martić
,
I.
, “
Assessment of hydrodynamic characteristics of a full-scale ship at different draughts
,”
Ocean Eng.
156
,
135
152
(
2018
).
14.
Feng
,
D.
,
Yu
,
J.
,
He
,
R.
,
Zhang
,
Z.
, and
Wang
,
X.
, “
Free running computations of KCS with different propulsion models
,”
Ocean Eng.
214
,
107563
(
2020
).
15.
Haase
,
M.
,
Zurcher
,
K.
,
Davidson
,
G.
,
Binns
,
J. R.
,
Thomas
,
G.
, and
Bose
,
N.
, “
Novel CFD-based full-scale resistance prediction for large medium-speed catamarans
,”
Ocean Eng.
111
,
198
208
(
2020
).
16.
Helma
,
S.
,
Streckwall
,
H.
, and
Richter
,
J.
, “
The effect of propeller scaling methodology on the performance prediction
,”
J. Mar. Sci. Eng.
6
(
2
),
60
(
2018
).
17.
Hochkirch
,
K.
, and
Mallol
,
B.
, “
On the importance of full-scale CFD simulations for ships
,” in
Proceedings of the 12th International Conference on Computer Applications and Information Technology in the Maritime Industries
, Cortona, Italy (
2013
).
18.
Hu
,
J.
,
Zhang
,
W.
,
Wang
,
C.
,
Sun
,
S.
, and
Guo
,
C.
, “
Impact of skew on propeller tip vortex cavitation
,”
Ocean Eng.
220
,
108479
(
2021
).
19.
ITTC
, “
7.5-02-03-01.1: Propulsion/bollard pull test
,”
ITTC–Recommended Procedures and Guidelines
(
ITTC
,
2011
).
20.
ITTC
, “
7.5-03-02-03: Practical guidelines for ship CFD applications
,”
ITTC–Recommended Procedures and Guidelines
(
ITTC
,
2014
).
22.
Jing
,
Z.
, and
Ducoin
,
A.
, “
Direct numerical simulation and stability analysis of the transitional boundary layer on a marine propeller blade
,”
Phys. Fluids
32
,
124102
(
2020
).
23.
Kinaci
,
O. K.
,
Gokce
,
M. K.
,
Alkan
,
A. D.
, and
Kukner
,
A.
, “
On self-propulsion assessment of marine vehicles
,”
Brodogradnja
69
(
4
),
29
51
(
2018
).
24.
Krasilnikov
,
V.
,
Sun
,
J.
, and
Halse
,
K. H.
, “
CFD investigation in scale effect on propellers with different magnitude of skew in turbulent flow
,” in
First International Symposium on Marine Propulsors
, Trondheim, Norway (
2009
).
25.
Li
,
Y.
,
Chen
,
K.
,
Wang
,
H.
, and
You
,
Y.
, “
Surface wave characteristics of a volume source horizontally translating in a stratified fluid
,”
Phys. Fluids
32
,
116602
(
2020
).
26.
Liu
,
L.
,
Wang
,
X.
,
He
,
R.
,
Zhang
,
Z.
, and
Feng
,
D.
, “
CFD prediction of stern flap effect on catamaran seakeeping behavior in long crest head wave
,”
Appl. Ocean Res.
104
,
102367
(
2020
).
301.
Lungu
,
A.
, “
Scale effects on a tip rake propeller working in open water
,”
J. Mar. Sci. Eng
7
(
11
),
404
(
2019
).
27.
Menter
,
F. R.
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
28.
Niklas
,
K.
, and
Pruszko
,
H.
, “
Full-scale CFD simulations for the determination of ship resistance as a rational, alternative method to towing tank experiments
,”
Ocean Eng.
190
,
106435
(
2019
).
29.
Özden
,
M. C.
,
Gürkan
,
A. Y.
,
Özden
,
Y. A.
,
Canyurt
,
T. G.
, and
Korkut
,
E.
, “
Underwater radiated noise prediction for a submarine propeller in different flow conditions
,”
Ocean Eng.
126
,
488
500
(
2016
).
30.
Özden
,
Y. A.
,
Özden
,
M. C.
, and
Celik
,
F.
, “
Numerical investigation of submarine tail form on the hull efficiency
,” in
International Symposium on Marine Propulsors
, Espoo, Finland (
2017
).
31.
Özden
,
Y. A.
,
Özden
,
M. C.
,
Demir
,
E.
, and
Kurdoğlu
,
S.
, “
Experimental and numerical investigation of DARPA Suboff submarine propelled with INSEAN E1619 propeller for self-propulsion
,”
J. Ship Res.
63
(
4
),
235
250
(
2019
).
32.
Peravali
,
S. K.
,
Bensow
,
R.
,
Gyllenram
,
W.
, and
Shiri
,
A.
, “
An investigation on ITTC 78 scaling method for unconventional propellers
,” in
International Conference on Hydrodynamics
, Chennai, India (
2016
).
33.
Pereira
,
F. S.
,
Eça
,
L.
, and
Vaz
,
G.
, “
Verification and validation exercises for the flow around the KVLCC2 tanker at model and full-scale Reynolds numbers
,”
Ocean Eng.
129
,
133
148
(
2017
).
34.
Posa
,
A.
, and
Balaras
,
E.
, “
A numerical investigation of the wake of an axisymmetric body with appendages
,”
J. Fluid Mech.
792
,
470
498
(
2016
).
35.
Posa
,
A.
, and
Balaras
,
E.
, “
Large-eddy simulations of a notional submarine in towed and self-propelled configurations
,”
Comput. Fluids
165
,
116
126
(
2018
).
36.
Sezen
,
S.
,
Dogrul
,
A.
,
Delen
,
C.
, and
Bal
,
S.
, “
Investigation of self-propulsion of DARPA Suboff by RANS method
,”
Ocean Eng.
150
,
258
271
(
2018
).
37.
Shin
,
K. W.
, and
Andersen
,
P.
, “
CFD analysis of scale effects on conventional and tip-modified propellers
,” in
Fifth International Symposium on Marine Propulsors
, Espoo, Finland (
2017
).
38.
Stern
,
F.
,
Wilson
,
R.
,
Coleman
,
H.
, and
Paterson
,
E.
, “
Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures
,”
J. Fluids Eng.
123
(
4
),
793
802
(
2001
).
39.
Sun
,
S.
,
Wang
,
C.
,
Guo
,
C.
,
Zhang
,
Y.
,
Sun
,
C.
, and
Liu
,
P.
, “
Numerical study of scale effect on the wake dynamics of a propeller
,”
Ocean Eng.
196
,
106810
(
2020
).
40.
Takahashi
,
K.
, and
Sahoo
,
P. K.
, “
Numerical study on self-propulsive performance of the DARPA Suboff submarine including uncertainty analysis
,” in
International Conference on Ships and Offshore Structures
, Florida, USA (
2019
).
41.
Tian
,
C.
,
Jiang
,
F.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
, “
Antisymmetric vortex interactions in the wake behind a step cylinder
,”
Phys. Fluids
29
,
101704
10 (
2017
).
42.
Wang
,
L.
,
Guo
,
C.
,
Su
,
Y.
, and
Wu
,
T.
, “
A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers
,”
Int. J. Naval Archit. Ocean Eng.
10
(
2
),
212
224
(
2018
).
43.
Wang
,
L.
,
Martin
,
J. E.
,
Felli
,
M.
, and
Carrica
,
P. M.
, “
Experiments and CFD for the propeller wake of a generic submarine operating near the surface
,”
Ocean Eng.
206
,
107304
(
2020
).
44.
Xing
,
T.
, and
Stern
,
F.
, “
Factors of safety for Richardson extrapolation
,”
J. Fluids Eng.
132
(
6
),
61403
(
2010
).
45.
Zhang
,
Z.
,
Guo
,
L.
,
Wei
,
P.
,
Wang
,
X.
, and
Feng
,
D.
, “
Numerical simulation of submarine surfacing motion in regular waves
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
44
(
2
),
359
372
(
2020
).
46.
Zhao
,
Y.
,
Investigation in Scale Effects on Propellers with Different Magnitude of Skew by CFD Methods
(
Aalesund University College
,
Aalesund, Norway
,
2015
).
47.
Zhu
,
Z.
, “
Numerical study on characteristic correlation between cavitating flow and skew of ship propellers
,”
Ocean Eng.
99
,
63
71
(
2015
).
You do not currently have access to this content.