When rod surface roughness is introduced in a turbulent Couette–Poiseuille flow (CP-flow), it is known that the Reynolds stresses near the centerline decrease due to weakened very-large-scale motions (VLSMs) and roll-cell motions [Lee, Y. M. et al., “Direct numerical simulation of a turbulent Couette–Poiseuille flow with a rod-roughened wall,” Phys. Fluids 30, 105101 (2018)]. In the present study, we examine the origin of the weakened turbulent structures near the centerline in a CP-flow with roughness (CPR-flow) using a dataset from direct numerical simulation. The top–down and bottom–up interactions to organize a CP-flow are very similar to those found in earlier studies in turbulent channel/pipe and boundary layer flows. The circulation of roll-cells in the outer region induces the spanwise congregation of negative streamwise velocity fluctuating structures (u) near the wall, leading to a large-scale ejection into the outer region. This large-scale ejection contributes to the formation of a negative VLSM when two adjacent negative large-scale motions merge, and the VLSM induces the circulation of roll-cell motion due to the pure kinematics. A similar process for the inner–outer interactions is found for a CPR-flow. However, because the impact of the surface roughness suppresses the collective motion of negative u-structures near the surface roughness, strong congregation by roll-cells is observed to occur far from the wall, indicating that relatively few negative u-structures with low strength contribute to the formation of a large-scale ejection for the CPR-flow. The weakened large-scale ejection decreases the strength of the VLSM, resulting in weakened roll-cell motion.

1.
Abe
,
H.
,
Antonia
,
R. A.
, and
Toh
,
S.
, “
Large-scale structures in a turbulent channel flow with a minimal streamwise flow unit
,”
J. Fluid Mech.
850
,
733
768
(
2018
).
2.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
3.
Ahn
,
J.
,
Lee
,
J. H.
,
Jang
,
S. J.
, and
Sung
,
H. J.
, “
Direct numerical simulations of fully developed turbulent pipe flows for Reτ = 180, 544 and 934
,”
Intl. J. Heat Fluid Flow
44
,
222
228
(
2013
).
4.
del Álamo
,
J. C.
, and
Jiménez
,
J.
, “
Linear energy amplification in turbulent channels
,”
J. Fluid Mech.
559
,
205
213
(
2006
).
5.
Ashrafian
,
A.
,
Andersson
,
H. I.
, and
Manhart
,
M.
, “
DNS of turbulent flow in a rod-roughened channel
,”
Intl. J. Heat Fluid Flow
25
,
373
383
(
2004
).
6.
Avsarkisov
,
V.
,
Hoyas
,
S.
,
Oberlack
,
M.
, and
García-Galache
,
J. P.
, “
Turbulent plane Couette flow at moderately high Reynolds number
,”
J. Fluid Mech.
751
,
R1
(
2014
).
7.
Bakken
,
O. M.
,
Krogstad
,
P. Å.
,
Ashrafian
,
A.
, and
Andersson
,
H. I.
, “
Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls
,”
Phys. Fluids
17
,
065101
(
2005
).
8.
Baltzer
,
J. R.
, “
Structure and proper orthogonal decomposition in simulations of wall-bounded turbulent shear flows with canonical geometries,” Ph.D.
thesis (
Arizona State University
,
2012
).
9.
Baltzer
,
J. R.
,
Adrian
,
R. J.
, and
Wu
,
X.
, “
Structural organization of large and very large scales in turbulent pipe flow simulation
,”
J. Fluid Mech.
720
,
236
279
(
2013
).
10.
Bech
,
K.
,
Tillmark
,
N.
,
Alfredsson
,
P.
, and
Andersson
,
H.
, “
An investigation of turbulent plane Couette flow at low Reynolds numbers
,”
J. Fluid Mech.
286
,
291
325
(
1995
).
11.
Burattini
,
P.
,
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
, “
Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall
,”
J. Fluid Mech.
600
,
403
426
(
2008
).
12.
Christensen
,
K. T.
, and
Adrian
,
R. J.
, “
Statistical evidence of hairpin vortex packets in wall turbulence
,”
J. Fluid Mech.
431
,
433
443
(
2001
).
13.
Chung
,
D.
, and
McKeon
,
B. J.
, “
Large-eddy simulation of large-scale structures in long channel flow
,”
J. Fluid Mech.
661
,
341
364
(
2010
).
14.
Dennis
,
D. J. C.
, and
Nickels
,
T. B.
, “
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets
,”
J. Fluid Mech.
673
,
180
217
(
2011
).
15.
Djenidi
,
L.
,
Elavarasan
,
R.
, and
Antonia
,
R. A.
, “
The turbulent boundary layer over transverse square cavities
,”
J. Fluid Mech.
395
,
271
294
(
1999
).
16.
Duggleby
,
A.
,
Ball
,
K. S.
,
Paul
,
M. R.
, and
Fischer
,
P. F.
, “
Dynamical eigenfunction decomposition of turbulent pipe flow
,”
J. Turbul.
8
(
43
),
1
24
(
2007
).
17.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Connelly
,
J. S.
, “
Examination of a critical roughness height for outer layer similarity
,”
Phys. Fluids
19
,
095104
(
2007
).
18.
Gandía-Barberá
,
S.
,
Hoyas
,
S.
,
Oberlack
,
M.
, and
Kraheberger
,
S.
, “
Letter: The link between the Reynolds shear stress and the large structures of turbulent Couette–Poiseuille flow
,”
Phys. Fluids
30
,
041702
(
2018
).
19.
Hamilton
,
J. M.
,
Kim
,
J.
, and
Waleffe
,
F.
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
20.
Hutchins
,
N.
, and
Marusic
,
I.
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc. London A
365
,
647
664
(
2007
).
21.
Hwang
,
J.
,
Lee
,
J.
,
Sung
,
H. J.
, and
Zaki
,
T. A.
, “
Inner–outer interactions of large-scale structures in turbulent channel flow
,”
J. Fluid Mech.
790
,
128
157
(
2016
).
22.
Hwang
,
Y.
, and
Cossu
,
C.
, “
Self-sustained processed at large scales in turbulent channel flow
,”
Phys. Rev. Lett.
105
(
4
),
044505
(
2010
).
23.
Jiménez
,
J.
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
24.
Kim
,
J. H.
, and
Lee
,
J. H.
, “
Direct numerical simulation of a turbulent Couette–Poiseuille flow: Turbulent statistics
,”
Intl. J. Heat Fluid Flow
72
,
288
303
(
2018
).
25.
Kim
,
J. H.
,
Hwang
,
J. H.
,
Lee
,
Y. M.
, and
Lee
,
J. H.
, “
Direct numerical simulation of a turbulent Couette–Poiseuille flow, Part 2: Large- and very-large-scale motions
,”
Intl. J. Heat Fluid Flow
86
,
108687
(
2020
).
26.
Kim
,
K. C.
, and
Adrian
,
R. J.
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
422
(
1999
).
27.
Kitoh
,
O.
,
Nakabyashi
,
K.
, and
Nishimura
,
F.
, “
Experimental study on mean velocity and turbulence characteristics of plane Couette flow: Low-Reynolds-number effects and large longitudinal vortical structure
,”
J. Fluid Mech.
539
,
199
227
(
2005
).
28.
Komminaho
,
J.
,
Lundbladh
,
A.
, and
Johansson
,
A.
, “
Very large structures in plane turbulent Couette flow
,”
J. Fluid Mech.
320
,
259
259
(
1996
).
29.
Krogstad
,
P. Å.
, and
Antonia
,
R. A.
, “
Surface roughness effects in turbulent boundary layers
,”
Exp. Fluids
27
,
450
460
(
1999
).
30.
Lee
,
J.
,
Lee
,
J. H.
,
Choi
,
J.-I.
, and
Sung
,
H. J.
, “
Spatial organization of large- and very-large-scale motions in a turbulent channel flow
,”
J. Fluid Mech.
749
,
818
840
(
2014
).
31.
Lee
,
J. H.
, and
Sung
,
H. J.
, “
Very-large-scale motions in a turbulent boundary layer
,”
J. Fluid Mech.
673
,
80
120
(
2011
).
32.
Lee
,
J. H.
,
Sung
,
H. J.
, and
Adrian
,
R. J.
, “
Space–time formation of very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
881
,
1010
1047
(
2019
).
33.
Lee
,
J. H.
,
Sung
,
H. J.
, and
Krogstad
,
P. Å.
, “
Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
,”
J. Fluid Mech.
669
,
397
431
(
2011
).
34.
Lee
,
M.
, and
Moser
,
R. D.
, “
Extreme-scale motions in turbulent plane Couette flows
,”
J. Fluid Mech.
842
,
128
145
(
2018
).
35.
Lee
,
S.-H.
, and
Sung
,
H. J.
, “
Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall
,”
J. Fluid Mech.
584
,
125
146
(
2007
).
36.
Lee
,
Y. M.
,
Kim
,
J. H.
, and
Lee
,
J. H.
, “
Direct numerical simulation of a turbulent Couette–Poiseuille flow with a rod-roughened wall
,”
Phys. Fluids
30
,
105101
(
2018
).
37.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, “
Direct numerical simulations of turbulent channel flow with transverse square bars on the wall
,”
J. Fluid Mech.
491
,
229
238
(
2003
).
38.
Mathis
,
R.
,
Monty
,
J. P.
,
Hutchins
,
N.
, and
Marusic
,
I.
, “
Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows
,”
Phys. Fluids
21
,
111703
(
2009
).
39.
McKeon
,
B. J.
, and
Sharma
,
A. S.
, “
A critical-layer framework for turbulent pipe flow
,”
J. Fluid Mech.
658
,
336
382
(
2010
).
40.
Moin
,
P.
, and
Moser
,
R. D.
, “
Characteristic-eddy decomposition of turbulence in a channel
,”
J. Fluid Mech.
200
,
471
509
(
1989
).
41.
Nadeem
,
M.
,
Lee
,
J. H.
,
Lee
,
J.
, and
Sung
,
H. J.
, “
Turbulent boundary layers over sparsely-spaced rod-roughened walls
,”
Intl. J. Heat Fluid Flow
56
,
16
27
(
2015
).
42.
Nagano
,
Y.
,
Hattori
,
H.
, and
Houra
,
T.
, “
DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness
,”
Intl. J. Heat Fluid Flow
25
,
393
403
(
2004
).
43.
Natrajan
,
V. K.
,
Wu
,
Y.
, and
Christensen
,
K. T.
, “
Spatial signatures of retrograde spanwise vortices in wall turbulence
,”
J. Fluid Mech.
574
,
155
167
(
2007
).
44.
Orlandi
,
P.
,
Leonardi
,
S.
, and
Antonia
,
R. A.
, “
Turbulent channel flow with either transverse or longitudinal roughness elements on one wall
,”
J. Fluid Mech.
561
,
279
305
(
2006
).
45.
Perry
,
A. E.
, and
Chong
,
M. S.
, “
On the mechanism of wall turbulence
,”
J. Fluid Mech.
119
,
173
217
(
1982
).
46.
Perry
,
A. E.
, and
Marusic
,
I.
, “
A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis
,”
J. Fluid Mech.
298
,
361
388
(
1995
).
47.
Pirozzoli
,
S.
,
Bernardini
,
M.
, and
Orlandi
,
P.
, “
Large-scale motions and inner/outer layer interactions in turbulent Couette–Poiseuille flows
,”
J. Fluid Mech.
680
,
534
563
(
2011
).
48.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
,
1
25
(
1991
).
49.
Rawat
,
S.
,
Cossu
,
C.
,
Hwang
,
Y.
, and
Rincon
,
F.
, “
On the self-sustained nature of large-scale motions in turbulent Couette flow
,”
J. Fluid Mech.
782
,
515
540
(
2015
).
50.
Schultz
,
M. P.
, and
Flack
,
K. A.
, “
Outer layer similarity in fully rough turbulent boundary layers
,”
Exp. Fluids
38
,
328
340
(
2005
).
51.
Squire
,
D. T.
,
Morrill-Winter
,
C.
,
Hutchins
,
N.
,
Schultz
,
M. P.
,
Klewicki
,
J. C.
, and
Marusic
,
I.
, “
Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers
,”
J. Fluid Mech.
795
,
210
240
(
2016
).
52.
Stanislas
,
M.
,
Perret
,
L.
, and
Foucaut
,
J.
, “
Vortical structures in the turbulent boundary layer: A possible route to a universal representation
,”
J. Fluid Mech.
602
,
327
382
(
2008
).
53.
Tachie
,
M. F.
,
Bergstrom
,
D. J.
, and
Balachandar
,
R.
, “
Roughness effects in low-Reθ open-channel turbulent boundary layers
,”
Exp. Fluids
35
,
338
346
(
2003
).
54.
Toh
,
S.
, and
Itano
,
T.
, “
Interaction between a large-scale structure and near-wall structures in channel flow
,”
J. Fluid Mech.
524
,
249
262
(
2005
).
55.
Townsend
,
A. A.
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
1976
).
56.
Tsukahara
,
T.
,
Kawamura
,
H.
, and
Shingai
,
K.
, “
DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region
,”
J. Turbul.
7
,
1
16
(
2006
).
57.
Tutkun
,
M.
, and
George
,
W. K.
, “
Lumley decomposition of turbulent boundary layer at high Reynolds numbers
,”
Phys. Fluids
29
,
020707
(
2017
).
58.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, “
Turbulence structure in a boundary layer with two-dimensional roughness
,”
J. Fluid Mech.
635
,
75
101
(
2009
).
59.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, “
Turbulence structure in boundary layers over periodic two- and three-dimensional roughness
,”
J. Fluid Mech.
676
,
172
190
(
2011
).
60.
Wu
,
Y.
, and
Christensen
,
K. T.
, “
Outer-layer similarity in the presence of a practical rough-wall topography
,”
Phys. Fluids
19
,
085108
(
2007
).
You do not currently have access to this content.